Digital 3D Smocking Design

Jing Ren, Aviv Segall, Olga Sorkine-Hornung
Interactive Geometry Lab (IGL)
ETH Zurich
Smocking 🧼 not smoking!

https://www.pinterest.ch/pin/690669292878820301/
https://www.pinterest.ch/pin/1002332460800168804/
https://www.pinterest.ch/pin/574560864973414366/
British garment “Smocc”

https://collections.vam.ac.uk/item/O954665/harrowing-with-oxen-print-unknown/

https://collections.vam.ac.uk/item/O57071/national-photographic-record-and-survey-photograph-stone-benjamin-sir/
From “Smocc” to Smocking

https://collections.vam.ac.uk/item/O354402/smock-smock-unknown/

https://collections.mfa.org/object/482317

https://collections.vam.ac.uk/item/0138699/vivienne-fashion-doll-latter-axton-jap/
English smocking

- folded pleats
- gathered threads
- embroidered visible stitches
Canadian smocking

- Stitching lines annotated on the back
- Invisible stitches
- Geometric textures from folds
Canadian smocking

- invisible stitches
- contracting stitches together
- geometric textures from folds
Canadian smocking

invisible stitches

geometric textures from folds

front view
Our goal: smocking preview

input smocking pattern

after stitching

output smocked result
Smocking: easy to formulate

Smocking pattern

- graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$
- stitching lines $\mathcal{L} = \{\ell_i\}$

For example:

- $\ell_1 = (v_{0,1}, v_{1,2})$
- $\ell_2 = (v_{2,1}, v_{1,1})$
- $\ell_3 = (v_{4,1}, v_{3,2})$
- ...
... but not easy to solve

\[\bar{e}_{25} = 2.69 \text{ cm} \]
\[\bar{e}_{50} = 1.26 \text{ cm} \]
\[\bar{e}_{75} = 0.97 \text{ cm} \]

cloth simulation using Blender

- geometry is unknown before smocking
- no geometry priors \(\rightarrow\) irregular pleats
How to extract geometric priors?

- merge each **stitching line** into a single node
- delete **degenerated & redundant edges**

✓ sewing constraints hard-coded
... capture modified geometry?

- fabric shrinks during the smocking process!

- back view

- front view

smocked graph
✓ sewing constraints
hard-coded
✗ modified geometry
not considered!
Embedding distance constraint

- ℓ_i is embedded at $x_i \in \mathbb{R}^3$
Embedding distance constraint

- ℓ_j is embedded at $x_j \in \mathbb{R}^3$
Embedding distance constraint

- ℓ_i is embedded at $x_i \in \mathbb{R}^3$
- ℓ_j is embedded at $x_j \in \mathbb{R}^3$
Embedding distance constraint

- ℓ_i is embedded at $x_i \in \mathbb{R}^3$
- ℓ_j is embedded at $x_j \in \mathbb{R}^3$

⚠️ $\|x_i - x_j\| \leq 1$

- If $\|x_i - x_j\| > 1$, fabric would tear at ‼️
$d(\cdot, \cdot)$: the distance in original fabric

$\|x_i - x_j\| \leq d_{i,j}$ where $d_{i,j} = \min_{v_p \in \ell_i, v_q \in \ell_j} d(v_p, v_q)$

v_i is embedded at $x_i \in \mathbb{R}^3$
Embedding distance constraint

\[\|x_i - x_j\| \leq d_{i,j} \quad \forall i, j \]

- \(d_{i,j}\) encodes the modified geometry
- guarantees that the fabric won’t tear after stitching

goal find an embedding that satisfies all the constraints 😊

problem trivial solutions such as \(\forall i \quad x_i = (0,0,0)\) are feasible 😞
Observations

valid but cluttered result

expected result
Our formulation for smocking

\[\max_{\mathbf{x} \in \mathbb{R}^3} \sum_{i \neq j} \|x_i - x_j\| \]

s.t. \[\|x_i - x_j\| \leq d_{i,j} \quad \forall i \neq j \]

energy avoids cluttered (trivial) solutions

constraints fabric doesn’t tear after smocking

challenges
- non-convex problem
- \(n(n-1)/2 \) constraints, too many!
… are all constraints necessary?

$$\max_{X \in \mathbb{R}^3} \sum_{i \neq j} \|x_i - x_j\|$$

s.t. $$\|x_i - x_j\| \leq d_{i,j} \quad \forall i \neq j$$

equivalent setting

- a set of balls can move around
- fragile string connecting balls with length $$d_{i,j}$$

⚠️ $$s_2$$ will break before $$s_1$$ is pulled taut
Simplified formulation

\[
\max_{x \in \mathbb{R}^3} \sum_{i \neq j} \|x_i - x_j\| \\
\text{s.t.} \quad \|x_i - x_j\| \leq d_{i,j} \quad \forall i \neq j
\]

energy avoids cluttered (trivial) solutions

constraints fabric doesn’t tear after smocking

\[
\|x_i - x_j\| \leq d_{i,j} \quad \forall (i, j) \in \mathcal{E}
\]

Only check the vertices that are adjacent
Unconstrained formulation

\[
\max_{x \in \mathbb{R}^3} \sum_{i \neq j} \|x_i - x_j\| \\
s.t. \, \|x_i - x_j\| \leq d_{i,j} \quad \forall (i, j) \in \mathcal{E}
\]

reformulate

\[
\min_{x \in \mathbb{R}^3} \sum_{(i,j) \in \mathcal{E}} (\|x_i - x_j\| - d_{i,j})^2
\]

graph embedding problem
Motivations

Smocked result = underlay + pleat

Height map visualization
... categorize vertices!

underlay vertex

pleat vertex!
Methodology: underlay graph

smocking pattern

smocked graph

underlay subgraph \((\mathcal{V}_u, \mathcal{E}_u)\)
Methodology: pleat graph

smocking pattern

smocked graph

pleat subgraph \((V_p, E_p)\)
Methodology: two-stage solver

$$\min_{x \in \mathbb{R}^2} \sum_{(i,j) \in \mathcal{E}_u} \left(\|x_i - x_j\| - d_{i,j} \right)^2$$
Methodology: two-stage solver

\[
\min_{x \in \mathbb{R}^2} \sum_{(i,j) \in \mathcal{E}_u} (\|x_i - x_j\| - d_{i,j})^2
\]

\[
\min_{x \in \mathbb{R}^3} \sum_{(i,j) \in \mathcal{E}_p} (\|x_i - x_j\| - d_{i,j})^2
\]
Methodology: ARAP-deformation

As-rigid-as-possible surface modeling, Sorkine and Alexa, SGP 2007
Our results vs. fabrications

smocking pattern

ours

fabrication
Our results vs. fabrications

smocking pattern

ours

fabrication
Our results: radial grid

smocking pattern
front
back
Our results: hexagonal grid
Our results vs. Marvelous Designer
Our results vs. ArcSim

✓ correct aspect ratio after smocking ❌ non-realistic pleats
Our results vs. C-IPC

[C-IPC] “Codimensional Incremental Potential Contact”, Li et al. ACM Transactions on Graphics (TOG), 2021

✓ correct aspect ratio after smocking
✓ reasonable but not very accurate pleats
✗ computationally expensive
✗ non-trivial parameters tuning
Limitations & future work

No collision handling: self-intersections
Limitations & future work

Geometric features vs. material-dependent features

- canvas
- polyester (crisp, thin)
- polyester (soft, thick)
- satin
- ours
Acknowledgement The authors express gratitude to the anonymous reviewers for their valuable feedback. Special thanks to Minchen Li for his help with the comparison to C-IPC, Georg Sperl and Rahul Narain for their help with the comparison to ARCSim, and to Libo Huang and Jiong Chen for helpful discussions. Appreciation goes to Danielle Luterbacher and Sigrid Carl for their sewing advice. The authors also extend their thanks to all IGL members for their time and support. This work was supported in part by the ERC Consolidator Grant No. 101003104 (MYCLOTH).
Supplementary slides
Methodology: two-stage solver

\[
\min_{x \in \mathbb{R}^2} \sum_{(i,j) \in \mathcal{E}_u} (\|x_i - x_j\| - d_{i,j})^2
\]

\[
\min_{x \in \mathbb{R}^3} \sum_{(i,j) \in \mathcal{E}_p} (\|x_i - x_j\| - d_{i,j})^2
\]
Embedding distance constraint
Methodology: two-stage solver

- Faster convergence
- Better local minima
- More realistic results

![Graph showing two stages of solver](image1.png)

![Comparison of front and back views of pleat](image2.png)
Our results

pattern

front

back
Our results vs. fabrications
Observations: Underconstrained Pattern

\[d_{1,2} = 1, d_{2,3} = 1, d_{1,3} = \sqrt{2} \]

We can embed \(\ell_i \) at \(x_i \) such that:
\[\| x_i - x_j \| = d_{i,j} \]

\[d_{1,2} = 1, d_{2,3} = 1, d_{1,3} = \sqrt{5} \]

We have:
\[\| x_1 - x_3 \| \leq d_{1,2} + d_{2,3} = 2 \]
\[< d_{1,3} = \sqrt{5} \]
Observations: Overconstrained Pattern

Impossible to embed v_i at $x_i \in \mathbb{R}^2$ such that:

$$||x_i - x_j|| = d_{i,j}$$

Well-constrained example
... are all constraints necessary?

\[
\max_{x \in \mathbb{R}^3} \sum_{i \neq j} \|x_i - x_j\| \\
\text{s.t. } \|x_i - x_j\| \leq d_{i,j} \forall i \neq j
\]

equivalent setting

- a set of balls can move around
- fragile string connecting balls with length \(d_{i,j}\)

\(s_2\) will break before \(s_1\) is pulled taut
Methodology: two-stage solver

\[
\min_{x \in \mathbb{R}^2} \sum_{(i,j) \in \mathcal{E}_u} (\|x_i - x_j\| - d_{i,j})^2
\]

\[
\min_{x \in \mathbb{R}^3} \sum_{(i,j) \in \mathcal{E}_p} (\|x_i - x_j\| - d_{i,j})^2
\]