

Discrete Optimization for Shape Matching

Jing Ren, KAUST Simone Melzi, Sapienza University of Rome Peter Wonka, KAUST Maks Ovsjanikov, Ecole Polytechnique, IP Paris

Introduction to Shape Matching

Point-based methods

- [Bronstein et al. 2006],
- [Huang et. Al 2008]...

Parameterization-based methods

- [Lipman and Funkhouser 2009]
- [Aigerman et al. 2017]...

Optimal transport

- [Solomon et al. 2016]
- [Mandad et al. 2017]...

Functional maps

- [Ovsjanikov et al. 2012]
- [Ezuz and Ben-Chen 2017]...

Standard Functional Map Pipeline

Observations:

- <u>different</u> energies for fMap <u>optimization</u> and <u>post-processing</u>
- optimize fMap with regularizers but <u>no hard constraints</u>: $\min E(C)$
 - For some E(C) such as Laplacian Commutativity, the global minimizer is zero matrix

Outline

- 1. Introduction to shape matching
- 2. Standard <u>functional map pipeline</u> for shape matching
- 3. <u>Proper</u> functional map
- 4. <u>Discrete solver</u> for functional map optimization
- 5. <u>Results</u>: evaluations & applications

Definition: The proper functional map space is the set of functional maps that arise from pointwise correspondences. Particularly, we call a functional map C_{12} proper if there exists a pointwise map Π_{21} such that $C_{12} = \Phi_2^{\dagger} \Pi_{21} \Phi_1$

- Φ_i : Laplace-Beltrami <u>eigenbasis</u> of shape S_i
- A[†]: Moore–Penrose <u>pseudoinverse</u> of matrix A
- Π_{21} : matrix representation of a <u>pointwise map</u> from S_2 to S_1 , i.e.,
 - if $\Pi_{21}(i,j) = 1$, $v_i \in S_2$ is corresponding to $v_j \in S_1$

Notation: The space \mathcal{P}_{12} of proper functional maps between S_1 and S_2 is denoted as:

$$\mathcal{P}_{12} = \{ C_{12} | \exists \Pi_{21}, \text{ s. t. } C_{12} = \Phi_2^{\dagger} \Pi_{21} \Phi_1 \}$$

Previous Formulation:

 $\min_{\boldsymbol{C}_{12}} \boldsymbol{E}(\boldsymbol{C}_{12})$

- Pros: easy to solve
- Cons: not proper, i.e., converting to a pMap can introduce errors

[NO17]: $\min_{C_{12}} E(C_{12}) + E_{\text{multiplicative}}(C_{12})$

Propose the multiplicative operators to guide the fmap to be proper <u>implicitly</u>

Our Formulation: $\min_{\substack{C_{12} \in \mathcal{P}_{12}}} E(C_{12})$

- Pros: returns a proper fMap
- Cons: search space is discrete and exponential in size

Problem Formulation:

 $\min_{\boldsymbol{C}_{12}\in\boldsymbol{\mathcal{P}}_{12}}\boldsymbol{E}(\boldsymbol{C}_{12})$

Naïve solution 1:

- **1.** $C^* = \operatorname{argmin} E(C_{12})$
- **2.** $C = \operatorname{Proj}_{\mathcal{P}_{12}}(C^*)$
- Pros: easy to solve
- Cons: the unconstrained optimization can lead to undesirable local minima; the projection step is discrete and can introduce errors

Naïve solution 2: \mathcal{P}_{12} is discrete, and we can enumerate all possible proper functional maps to find the global minimizer

- Pros: returns global minimizer
- Cons: *P*₁₂ is toooooo large, only works for shapes with less than 10 vertices

Approach Overview:

- 1. Given a functional map energy, reformulate it by replacing some terms C_{12} with $\Phi_2^{\dagger}\Pi_{21}\Phi_1$.
- 2. Add a coupling term to the energy and make the functional map C_{12} and pointwise map Π_{21} independent free variables of the resulting problem.
- 3. Alternate between computing the optimal functional and pointwise maps, while fixing the other representation. (ZoomOut and sampling techniques can be applied here)

Approach Overview:

- 1. Given a functional map energy, reformulate it by replacing some terms C_{12} with $\Phi_2^{\dagger}\Pi_{21}\Phi_1$.
- 2. Add a coupling term to the energy and make the functional map C_{12} and pointwise map Π_{21} independent free variables of the resulting problem.
- 3. Alternate between computing the optimal functional and pointwise maps, while fixing the other representation.

Lemma 4.1: Given arbitrary matrices X, Y, and a reduced basis Φ , s.t. $\Phi^T A \Phi = Id$, then the following two problems:

i.
$$\min_{\Pi} \| \Phi^{\dagger} \Pi X - Y \|_{F}^{2} + \| (Id - \Phi \Phi^{\dagger}) \Pi X \|_{A}^{2}$$
, where $\| W \|_{A}^{2} = tr(W^{T}AW)$

ii. $\min_{\Pi} \| \Pi X - \Phi Y \|_F^2$

are equivalent. Moreover problem ii) is row-separable and can be solved in closed form through nearest neighbor search. ([EBC17] provides a special case of this statement.)

• [EBC17] EZUZ D., BEN-CHEN M.: Deblurring and denoising of maps between shapes. Computer Graphics Forum 36, 5 (2017)

Approach Overview:

- 1. Given a functional map energy, reformulate it by replacing some terms C_{12} with $\Phi_2^{\dagger}\Pi_{21}\Phi_1$.
- 2. Add a coupling term to the energy and make the functional map C_{12} and pointwise map Π_{21} independent free variables of the resulting problem.
- 3. Alternate between computing the optimal functional and pointwise maps, while fixing the other representation.

Example of minimizing $E(C_{12}) = \|C_{12}f_1 - f_2\|_F^2$:

- 1. Apply reformulation: $E^{\text{mod}}(C_{12}, \Pi_{21}) = \left\| \Phi_2^{\dagger} \Pi_{21} \Phi_1 f_1 f_2 \right\|_F^2$
- 2. Add a coupling term: $E^{\text{rel}}(C_{12}, \Pi_{21}) = E^{\text{mod}}(C_{12}, \Pi_{21}) + \alpha \|\Phi_2^{\dagger}\Pi_{21}\Phi_1C_{12}^T I\|_F^2$
- 3. Optimize in an alternating scheme:
 - $\Pi_{21} = \operatorname{argmin}_{\Pi_{21}} E^{\operatorname{rel}}(C_{12}, \Pi_{21})$
 - $\bullet \quad C_{12} = \Phi_2^{\dagger} \Pi_{21} \Phi_1$

Contributions

We propose a <u>discrete solver</u> that can optimize <u>functional map-based</u> energies.

- Easy to use/adapt for <u>different</u> energies
- Returns a proper functional map that corresponds to a pointwise map
- Achieves lower energy values compared to the standard continuous solver

Two practical applications:

- Alternative of Multiplicative Operators
 - [NO17] proposes the multiplicative operators to guide the optimization towards proper functional maps (implicitly). Our discrete solver outperforms the multiplicative Op.
- New refinement method: Effective Functional Map Refinement
 - Combines commonly used fMap energies including bijectivity, orthogonality and Laplacian commutativity from <u>both directions</u>.
 - Achieves better <u>accuracy/bijectivity</u> on SHREC'19

Results: Evaluation on the Discrete Solver

50 Shape pairs from the SMAL dataset

For different functional map-based energies, we compare:

- <u>continuous</u> solver C
- <u>discrete</u> solver \mathcal{D}

Energies \ Stats.		min.	avg.	max.	std.
$E_1 = \left\ CC^T - I \right\ _F$	\mathcal{C}	4.9924	5.1932	5.4530	0.0976
	\mathcal{D}	0.6789	2.2557	3.0707	0.4801
$E_2 = \left\ C \Delta_1 - \Delta_2 C \right\ _F$	\mathcal{C}	1.0615	1.2261	1.4205	0.0900
	${\cal D}$	0.1575	0.8053	1.2197	0.2229
$E_3 = \left\ C \Delta_1 C^T - \Delta_2 \right\ _F$	\mathcal{C}	1.9219	2.1302	2.2884	0.1005
	${\cal D}$	0.2972	1.3173	1.8223	0.3694
$E_4 = \left\ C_{12} C_{21} - I \right\ _F$	\mathcal{C}	12.531	13.059	13.948	0.2645
$+ \ C_{21}C_{12} - I\ _{F}$	\mathcal{D}	0.9355	4.1369	5.3564	1.0138

Results: Evaluation on the Discrete Solver

Minimize the Laplacian Commutativity energy

Results: Alternative of Multiplicative Operators

Baseline: $\min_{C_{12}} \sum_{i} \|C_{12}f_{i} - g_{i}\|_{F}^{2} + \alpha \|C_{12}\Delta_{1} - \Delta_{2}C_{12}\|_{F}^{2} + \beta \sum_{i} \|C_{12}\Omega_{f_{i}} - \Omega_{g_{i}}C_{12}\|_{F}^{2}$ Ours: $\min_{C_{12}\in\mathcal{P}_{12}} \sum_{i} \|C_{12}f_{i} - g_{i}\|_{F}^{2} + \alpha \|C_{12}\Delta_{1} - \Delta_{2}C_{12}\|_{F}^{2}$

Results: Effective Functional Map Refinement

SHREC'19 Challenge

Methods \ Metrics	Accuracy	Bijectivity	Runtime		
	$(\times 10^{-3})$	$(\times 10^{-3})$	(s)		
Initialization	60.4	95.1	-		
ICP	47.0	47.4	87.3		
PMF (1k)	51.8	11.8	118.1		
BCICP (5k)	30.1	12.7	437.9		
RHM	42.6	13.5	2313		
ZoomOut	28.8	26.1	1.5		
Ours	27.3	15.1	8.17		

Summary

- 1. We propose a discrete solver that can optimize functional map-based energies.
- 2. Two practical applications:
 - Alternative of Multiplicative Operators
 - New refinement method: Effective Functional Map Refinement

Limitations

- 1. Our discrete solver with the practical modifications has <u>few theoretical</u> <u>guarantees</u>.
- 2. For some functional map energies with complicated formulations, e.g., using higher order terms, our reformulation strategy might not work directly and more advanced solvers might be needed.

Future Work

- 1. Explore different <u>coupling terms</u>
- 2. Investigate different pointwise recovery techniques, such as Sinkhorn algorithm

Discrete Optimization for Shape Matching

Jing Ren, Simone Melzi, Peter Wonka, Maks Ovsjanikov 2021 Demo code is available at: https://github.com/llorz/SGP21 discreteOptimization

erc

Acknowledgement The authors thank the anonymous reviewers for their valuable comments. Parts of this work were supported by the KAUST OSR Award No. CRG-2017-3426, the ERC Starting Grants No. 758800 (EXPROTEA) and No. 802554 (SPECGEO), and the ANR AI Chair AIGRETTE.

SYMPOSIUM ON GEOMETRY PROCESSING 2021

Supplementary

Definition: The proper functional map space is the set of functional maps that arise from pointwise correspondences. Particularly, we call a functional map C_{12} proper if there exists a pointwise map Π_{21} such that $C_{12} = \Phi_2^{\dagger} \Pi_{21} \Phi_1$

Notation: The space \mathcal{P}_{12} of proper functional maps between S_1 and S_2 is denoted as:

$$\mathcal{P}_{12} = \{ \mathcal{C}_{12} | \exists \Pi_{21}, \text{ s.t. } \mathcal{C}_{12} = \Phi_2^{\dagger} \Pi_{21} \Phi_1 \}$$

Previous Formulation:

 $\min_{\boldsymbol{C}_{12}} \boldsymbol{E}(\boldsymbol{C}_{12})$

- Pros: easy to solve
- Cons: not proper, i.e., converting to a pMap can introduce errors

Our Formulation: $\min_{\substack{C_{12} \in \mathcal{P}_{12}}} E(C_{12})$

- Pros: returns a proper fMap
- Cons: search space is discrete and exponential in size

Approach Overview:

- 1. Given a functional map energy, reformulate it by replacing some terms C_{12} with $\Phi_2^{\dagger}\Pi_{21}\Phi_1$.
- 2. Add a coupling term to the energy
- 3. Optimize in an alternating scheme

Goal: make it easy to solve $\Pi_{21} = \operatorname{argmin}_{\Pi_{21}} E^{\text{mod}}(C_{12}, \Pi_{21}) + \alpha \left\| \Phi_2^{\dagger} \Pi_{21} \Phi_1 C_{12}^T - I \right\|_F^2$

Approach Overview:

- 1. Given a functional map energy, reformulate it by replacing some terms C_{12} with $\Phi_2^{\dagger}\Pi_{21}\Phi_1$.
- 2. Add a coupling term to the energy
- 3. Optimize in an alternating scheme

Goal: make it easy to solve $\Pi_{21} = \operatorname{argmin}_{\Pi_{21}} E^{\text{mod}}(C_{12}, \Pi_{21}) + \alpha \left\| \Phi_2^{\dagger} \Pi_{21} \Phi_1 C_{12}^T - I \right\|_F^2$

Examples of Reformulation :

• $E(C_{12}) = \|C_{12}f_1 - f_2\|_F^2$ apply reformulation $E^{\text{mod}} = \|\Phi_2^{\dagger}\Pi_{21}\Phi_1f_1 - f_2\|_F^2$ • $E(C_{12}) = \|C_{12}C_{12}^T - I\|_F^2$ apply reformulation $E^{\text{mod}} = \|\Phi_2^{\dagger}\Pi_{21}\Phi_1C_{12}^T - I\|_F^2$ • $E(C_{12}) = \|C_{12}\Omega_{f_1} \pm \Omega_{f_2}C_{12}\|_F^2$ apply reformulation $E^{\text{mod}} = \|\Phi_2^{\dagger}\Pi_{21}\Phi_1\Omega_{f_1} \pm \Omega_{f_2}C_{12}\|_F^2$ • $E(C_{12}) = \|C_{12}\Delta_1C_{12}^T - \Delta_2\|_F^2$ apply reformulation $E^{\text{mod}} = \|\Phi_2^{\dagger}\Pi_{21}\Phi_1\Delta_1C_{12}^T - \Delta_2\|_F^2$

Results: Evaluation on the Discrete Solver

50 Shape pairs from the <u>SMAL</u> dataset

Energies \ ShapeII)	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	Avg. (50 pairs)
$E_{i} = CC^{T} $ C 5	5.270 5.06	1 5.304	5.230	5.148	5.213	5.241	5.183	5.041	5.093	5.335	5.122	5.081	5.453	5.287	5.193
$\mathcal{L}_1 = \ \mathcal{C}\mathcal{C}^{-} - I\ _F \qquad \mathcal{D} 2$	2.341 2.57	3 2.484	2.127	2.477	2.106	2.375	1.821	1.798	2.566	1.264	2.590	2.414	2.386	2.347	2.256
$E_2 = \ CA_1 - A_2C\ $ C 1	.133 1.22	7 1.156	1.271	1.091	1.123	1.291	1.190	1.125	1.213	1.188	1.113	1.242	1.237	1.170	1.226
$\mathcal{L}_2 = \ \mathbf{C}\Delta_1 - \Delta_2\mathbf{C}\ _F \mathcal{D} 0$	0.665 0.46	5 0.960	1.040	0.818	0.626	0.798	0.626	0.511	0.770	0.158	0.887	0.715	0.894	0.963	0.805
$E_2 = \ C \Lambda_1 C^T - \Lambda_2\ $ C 2	2.128 2.17	2 2.136	2.040	2.010	1.987	1.975	2.197	2.259	2.282	1.997	2.154	2.177	2.275	1.956	2.130
$\mathcal{L}_{3} = \ \mathbf{C}\Delta_{1}\mathbf{C} - \Delta_{2}\ _{F} \mathcal{D} 1$.412 1.58	8 1.495	1.193	1.474	1.178	1.729	1.533	1.083	1.451	0.413	1.455	1.568	1.718	0.834	1.317
$E_4 = \ C_{12}C_{21} - I\ _F C 1$	3.02 12.9	4 13.28	13.16	12.93	13.58	12.93	13.09	13.24	13.16	13.31	12.91	13.95	13.18	13.01	13.06
$+ \ C_{21}C_{12} - I\ _F \mathcal{D} 3$	3.895 5.06	8 4.661	4.926	3.085	4.382	4.074	4.448	4.657	4.716	1.299	4.694	4.380	4.957	4.742	4.137

For <u>different</u> functional map-based energies, we compare:

- standard <u>continuous</u> solver C
- our <u>discrete</u> solver \mathcal{D}