Structured Regularization of Functional Map Computations

Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov KAUST, École Polytechnique

Shape Matching

- Point-based methods
- [Bronstein et al. 2006],
- [Huang et. Al 2008]
- Parameterization-based methods
- [Lipman and Funkhouser 2009]
- [Aigerman et al. 2017]...
- Optimal transport
- [Solomon et al. 2016]
- [Mandad et al. 2017]...
- Functional maps
- [Ovsjanikov et al. 2012]
- [Ezuz and Ben-Chen 2017]...

Functional map pipeline

Eigenfunctions of Laplace-Beltrami Operator

Helmholtz equation

$$
\Delta_{S} f=\lambda f
$$

Shape S

Functional map pipeline

Function space basis

function f

$$
f \approx a_{1} \phi_{1}^{S}+a_{2} \phi_{2}^{S}+\cdots a_{k} \phi_{k}^{S}=\Phi^{S} a
$$

Functional map pipeline

Functional map definition

functional map: the matrix C that transports the coefficients from $\Phi^{S_{1}}$ to $\Phi^{S_{2}}$

Functional map pipeline

Functional map pipeline

Functional map pipeline

$$
\begin{array}{rlc}
C_{12}^{*}=\underset{C}{\operatorname{argmin}}\|C A-B\|_{F}^{2} & \begin{array}{c}
\text { Descriptor preservation } \\
\text { [OBCS* 12] }
\end{array} \\
& +w_{1}\left\|C \Delta_{1}-\Delta_{2} C\right\|_{F}^{2} & \begin{array}{c}
\text { Laplacian commutativity } \\
\text { [OBCS* 12] }
\end{array} \\
& +w_{2}\left\|C \Omega_{1}^{\text {multi }}-\Omega_{2}^{\text {multi }} C\right\|_{F}^{2} & \begin{array}{c}
\text { Multiplicative operators } \\
\text { [NO1 7] }
\end{array} \\
& +w_{3}\left\|C \Omega_{1}^{\text {orient }}-\Omega_{2}^{\text {orient }} C\right\|_{F}^{2} & \begin{array}{c}
\text { Orientation preservation } \\
\text { [RPWO 18] }
\end{array}
\end{array}
$$

Outline

- Laplacian commutativity - widely used
- Drawbacks of the standard Laplacian commutativity
- Unbounded in the smooth setting
- Not aligned with the ground-truth functional map
- Propose the resolvent Laplacian commutativity
- Bounded operator
- Better aligned
- Quantitative results
- Better stability
- Better accuracy

Reformulate the Laplacian-Commutativity term

$$
\begin{aligned}
E(C) & =\left\|C \Delta_{1}-\Delta_{2} C\right\|_{F}^{2} \\
& =\left\|C \operatorname{diag}\left(\Lambda_{1}\right)-\operatorname{diag}\left(\Lambda_{2}\right) C\right\|_{F}^{2} \\
& =\sum_{(i, j)} M_{i j} C_{i j}^{2}
\end{aligned}
$$

where $M_{i j}=\left(\lambda_{j}^{S_{1}}-\lambda_{i}^{S_{2}}\right)^{2}$

Applications of the Laplacian commutativity

"Image Co-Segmentation via Consistent Functional Maps" Fan Wang, Qixing Huang, Leonidas J. Guibas

Applications of the Laplacian commutativity

"Partial Functional Correspondence" E. Rodolà , L. Cosmo, M.M. Bronstein, A.Torsello, D. Cremers

$$
\rho_{\mathrm{corr}}(C)=\sum_{i j} W_{i j} C_{i j}^{2}+\cdots
$$

Drawbacks of the Laplacian commutativity

- Unboundedness
-in the full LB basis (of smooth manifolds)

$$
\left\|C_{12} \Delta_{1}-\Delta_{2} C_{12}\right\|^{2} \rightarrow \infty
$$

- Structure misalignment

Unboundedness Example

Spectrum of torus and sphere with unit area

$\left\|M_{\text {standard }}\right\|_{F}^{2}$ v.s. increasing size of $M_{\text {standard }}$

Unboundedness Example

$$
\begin{gathered}
S_{2}: \Delta_{2}=c \Delta_{1} \\
c \neq 1
\end{gathered}
$$

$S_{1}: \Delta_{1}$

$$
\left\|C_{12} \Delta_{1}-\Delta_{2} C_{12}\right\|^{2}=(c-1)^{2}\left\|\Delta_{1}\right\|_{F}^{2}
$$

Structure misalignment

Mask $M_{\text {standard }}$

where $M_{i j}=\left(\lambda_{j}^{S_{1}}-\lambda_{i}^{S_{2}}\right)^{2}$

Funnel-shape

- Boundedness: $\Delta \rightarrow$ resolvent of Δ
- Structure alignment: $\Delta \rightarrow \Delta^{r}$

Definition

Let A be a possibly unbounded linear operator (with some technical assumption), the resolvent of A at μ is defined as

$$
R_{\mu}(A)=(A-\mu I)^{-1}
$$

- μ is a complex number
- $R_{\mu}(A)$ is defined for all μ NOT in the spectrum of A
$R_{a+i b}(\Delta)$ is well-defined for any $(a+i b)$ NOT in the nonnegative real line (which contains the spectrum of Δ)

Important tool in operator theory

- Spectral theory: used in the definition of spectrum - Unbounded self-adjoint operators: norm-resolvent convergence $d(A, B)=\left\|R_{\mu}(A)-R_{\mu}(B)\right\|$

Theorem 1 (Bounded Resolvent Commutativity) Let C_{12} be a bounded functional map. Then in the operator norm,

$$
\left\|C_{12} R\left(\Delta_{1}^{\gamma}\right)-R\left(\Delta_{2}^{\gamma}\right) C_{12}\right\|_{\mathrm{op}}^{2}<\infty
$$

Bounded resolvent Laplacian-Commutativity

Bounded resolvent Laplacian-Commutativity

- $\Delta \rightarrow$ standard Laplacian commutator
- $R_{a+i b}\left(\Delta^{\gamma}\right)$: well-defined and bounded
- Introduce γ to tune the structure of the mask
- Our resolvent Laplacian commutator

$$
E\left(C_{12}\right) \equiv\left\|C_{12} \Delta_{1}-\Delta_{2} C_{12}\right\|_{F}^{z}=\left\|C_{12} R\left(\Delta_{1}^{\gamma}\right)-R\left(\Delta_{2}^{\gamma}\right) C_{12}\right\|_{F}^{2}
$$

- Δ has eigenvalues λ_{k}
- $R_{i}\left(\Delta^{1 / 2}\right)$ has eigenvalues

$$
M_{i j}=\left(\lambda_{j}^{S_{1}}-\lambda_{i}^{S_{2}}\right)^{2} \quad M_{i j}^{\mathrm{Re}}=\left(\frac{\sqrt{\lambda_{j}^{S_{1}}}}{\lambda_{j}^{S_{1}}+1}-\frac{\sqrt{\lambda_{i}^{S_{2}}}}{\lambda_{i}^{S_{2}}+1}\right)^{2} \quad M_{i j}^{\mathrm{Im}}=\left(\frac{1}{\lambda_{j}^{S_{1}+1}}-\frac{1}{\lambda_{i}^{S_{2}}+1}\right)^{2}
$$

Resolvent mask

$$
\left\|C_{12} R\left(\Delta_{1}^{\gamma}\right)-R\left(\Delta_{2}^{\gamma}\right) C_{12}\right\|_{F}^{2}=\sum_{i, j} M_{i j} C_{12}^{2}
$$

Mask $M_{\text {resolvent }}$

$$
\left(C_{\text {ground_truth }}\right)^{2}
$$

where $M_{i j}=M_{i j}^{\mathrm{Re}}+M_{i j}^{\mathrm{Im}}$
Funnel-shape

Mask reformulation of the resolvent commutativity

$$
E\left(C_{12}\right)=\left\|C_{12} R\left(\Delta_{1}^{\gamma}\right)-R\left(\Delta_{2}^{\gamma}\right) C_{12}\right\|_{F}^{2}=\sum_{(i, j)} M_{i j} C_{12}^{2}
$$

$$
\gamma=0.25
$$

$$
\gamma=0.5
$$

$$
\gamma=0.75
$$

$$
\gamma=1
$$

Penalty mask v.s. ground-truth functional map

"Partial Functional
Correspondences"
Rodolà et al

Results: Stability (example)

Given one pair of descriptors Compute a $k \times k$ functional map k^{2} variables!

$$
k=50 \quad k=100 \quad k=300
$$

Standard
$k=50 \quad k=100 \quad k=300$

Slanted

$$
k=50 \quad k=100 \quad k=300
$$

Resolvent

Results: Stability (summary)

FAUST

per-vertex measure

Results: Accuracy (example)

Given one pair of descriptors
Compute a 100×100 functional map

Standard

Slanted

Resolvent

Ground-truth

Results: Accuracy (summary)

TOSCA

Results: Correlation (fMap penalty v.s. pMap accuracy)

Results: Stability under remeshing and coarsening

Summary

- Shape matching - functional map pipeline
- Laplacian commutativity - widely used
- Drawbacks of the standard Laplacian commutativity
- Unbounded in the smooth setting
- Not aligned with the ground-truth functional map
- Propose the resolvent Laplacian commutativity
- Bounded operator
- Aligned with the funnel shape
- Results
- Better accuracy
- Better stability

Thanks for your attention

Structured Regularization of Functional Map Computations

Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov KAUST, École Polytechnique

Sample code

Convergence the resolvent Laplacian

Lemma 2. Let Δ_{1} and Δ_{2} be Laplacians on compact, connected, oriented surfaces M_{1} and M_{2}, respectively. Let $C_{12}: L_{2}\left(M_{1}\right) \rightarrow L_{2}\left(M_{2}\right)$ be a bounded operator. If $\gamma>\frac{1}{2}$, then:

$$
\left\|C_{12} R_{\mu}\left(\Delta_{1}^{\gamma}\right)-R_{\mu}\left(\Delta_{2}^{\gamma}\right) C_{12}\right\|_{H S}^{2}<\infty
$$

Where μ is any complex number not on the non-negative real line.

$$
\begin{aligned}
E\left(C_{12}\right) & =\left\|C_{12} \Delta_{1}-\Delta_{2} C_{12}\right\|_{F}^{2} \\
& =\left\|C_{12} \operatorname{diag}\left(\Lambda_{1}\right)-\operatorname{diag}\left(\Lambda_{2}\right) C_{12}\right\|_{F}^{2} \\
& =\left\|C_{12} \otimes\left(1_{k_{2}} \Lambda_{1}^{T}\right)-\left(\Lambda_{2} 1_{k_{1}}^{T}\right) \otimes C_{12}\right\|_{F}^{2} \\
& =\left\|\left(1_{k_{2}} \Lambda_{1}^{T}-\Lambda_{2} 1_{k_{1}}^{T}\right) \otimes C_{12}\right\|_{F}^{2} \\
& =\sum_{(i, j)} M \otimes\left(C_{12}\right)^{2}
\end{aligned}
$$

Results: Stability (summary)

FAUST

per-vertex measure

FAUST
direct measure

Results: Accuracy (example)

Given one pair of descriptors Compute a 100×100 functional map Corresponding point-wise map

Source

Standard

Resolvent

Ground-truth

Unboundedness Example

Unbounded standard Laplacian-Commutativity

$\left\|M_{\text {standard }}\right\|_{F}^{2}$ w.r.t. increasing size of $M_{\text {standard }}$

Definition 1 (Resolvent) Let A be a closed operator on some Hilbert space. Let $\rho(A)$ be the set of all complex numbers μ such that $R_{\mu}(A)=(A-\mu I)^{-1}$ is defined and bounded. $\rho(A)$: the resolvent set of operator A
$R_{\mu}(A)$: the resolvent operator of A at μ

- Given Laplace-Beltrami operator Δ
- Define $R_{a+i b}\left(\Delta^{\gamma}\right)$, the resolvent operator of Δ^{γ} at $(a+b i)$ - (Parameters $\gamma=\frac{1}{2}, a=0, b=1$)
- $R_{a+i b}\left(\Delta^{\gamma}\right)$ is well-defined and bounded for any $(a+i b)$ not in the non-negative real line (where the spectra of Δ^{γ} lies in)

