Structured Regularization of Functional Map Computations

Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov KAUST, École Polytechnique

Shape Matching

Point-based methods

- [Bronstein et al. 2006],
- [Huang et. Al 2008]...
- Parameterization-based methods
 - [Lipman and Funkhouser 2009]
 - [Aigerman et al. 2017]...
- Optimal transport
 - [Solomon et al. 2016]
 - [Mandad et al. 2017]...
- Functional maps

. . .

- [Ovsjanikov et al. 2012]
- [Ezuz and Ben-Chen 2017]...

Functional map pipeline

Eigenfunctions of Laplace-Beltrami Operator

Helmholtz equation $\Delta_S f = \lambda f$

Slide 4 out of 33

Functional map pipeline

Function space basis

function *f*

$$\boldsymbol{f} \approx a_1 \phi_1^S + a_2 \phi_2^S + \cdots + a_k \phi_k^S = \Phi^S \boldsymbol{a}$$

Functional map pipeline

 $\hat{g} = \Phi^{S_2} b$

b

Functional map pipeline

Functional map *C*

Functional map pipeline

Functional map *C*

a

Functional map pipeline

Descriptor preservation $C_{12}^* = \arg\min_{C} ||CA| - B||_F^2$ [OBCS*12] Laplacian commutativity $+w_1 \| C \Delta_1 - \Delta_2 C \|_F^2$ [OBCS*12] Multiplicative operators $|+w_2 \| C \Omega_1^{\text{multi}} - \Omega_2^{\text{multi}} C \|_{F}^2$ [NO17] Orientation preservation $+w_3 \|C\Omega_1^{\text{orient}} - \Omega_2^{\text{orient}}C\|_{F}^2$ [RPW018] -- •••

Outline

- Laplacian commutativity widely used
- Drawbacks of the standard Laplacian commutativity
 - Unbounded in the smooth setting
 - Not aligned with the ground-truth functional map
- Propose the resolvent Laplacian commutativity
 - Bounded operator
 - Better aligned
- Quantitative results
 - Better stability
 - Better accuracy

 $E(C) = \|C\Delta_1 - \Delta_2 C\|_F^2$ = $\|C\operatorname{diag}(\Lambda_1) - \operatorname{diag}(\Lambda_2) C\|_F^2$ = $\sum_{(i,j)} M_{ij} C_{ij}^2$

where
$$M_{ij} = \left(\lambda_j^{S_1} - \lambda_i^{S_2}\right)^2$$

Mask M

Applications of the Laplacian commutativity

"Image Co-Segmentation via Consistent Functional Maps" Fan Wang, Qixing Huang, Leonidas J. Guibas

Applications of the Laplacian commutativity

"Partial Functional Correspondence" E. Rodolà , L. Cosmo, M.M. Bronstein, A.Torsello, D. Cremers

$$\rho_{\rm corr}(C) = \sum_{ij} W_{ij} C_{ij}^2 + \cdots$$

Drawbacks of the Laplacian commutativity

- Unboundedness

-in the full LB basis (of smooth manifolds)

$$\|C_{12}\Delta_1 - \Delta_2 C_{12}\|^2 \to \infty$$

-Structure misalignment

Slide 14 out of 33

Unboundedness Example

Slide 15 out of 33

Unboundedness Example

 $S_2: \Delta_2 = c\Delta_1$ $c \neq 1$ $S_1: \Delta_1$

$\|C_{12}\Delta_{1} - \Delta_{2}C_{12}\|^{2} = (c - 1)^{2} \|\Delta_{1}\|_{F}^{2}$ \$\to\$

Structure misalignment

Mask M_{standard}

where
$$M_{ij} = \left(\lambda_j^{S_1} - \lambda_i^{S_2}\right)^2$$

Funnel-shape

– Boundedness: $\Delta \rightarrow resolvent of \Delta$

- Structure alignment: $\Delta \rightarrow \Delta^{\gamma}$

Resolvent operator

Definition

Let *A* be a possibly unbounded linear operator (with some technical assumption), the resolvent of *A* at μ is defined as $R_{\mu}(A) = (A - \mu I)^{-1}$

- μ is a complex number
- $R_{\mu}(A)$ is defined for all μ NOT in the spectrum of A

 $R_{a+ib}(\Delta)$ is well-defined for any (a + ib) NOT in the nonnegative real line (which contains the spectrum of Δ)

Resolvent operator

Applications

Important tool in operator theory

- Spectral theory: used in the definition of spectrum
- Unbounded self-adjoint operators: norm-resolvent convergence $d(A,B) = ||R_{\mu}(A) - R_{\mu}(B)||$

Bounded resolvent Laplacian–Commutativity

Theorem 1 (Bounded Resolvent Commutativity) Let C_{12} be a bounded functional map. Then in the operator norm,

$$\left\|C_{12}R\left(\Delta_{1}^{\gamma}\right)-R\left(\Delta_{2}^{\gamma}\right)C_{12}\right\|_{\mathrm{op}}^{2}<\infty$$

Bounded resolvent Laplacian–Commutativity

Bounded resolvent Laplacian–Commutativity

- $\Delta \rightarrow$ standard Laplacian commutator
- $R_{a+ib}(\Delta^{\gamma})$: well-defined and bounded
 - Introduce γ to tune the structure of the mask
 - Our resolvent Laplacian commutator

$$E(C_{12}) = \|C_{12}\Delta_1 - \Delta_2 C_{12}\|_F^2 = \|C_{12}R(\Delta_1^{\gamma}) - R(\Delta_2^{\gamma})C_{12}\|_F^2$$

Slide 23 out of 33

Resolvent mask

* Def: $R_{\mu}(A) = (A - \mu I)^{-1}$

Resolvent mask

$$\left\| C_{12} R(\Delta_{1}^{\gamma}) - R(\Delta_{2}^{\gamma}) C_{12} \right\|_{F}^{2} = \sum_{i,j} M_{ij} C_{12}^{2}$$

Mask M_{resolvent}

where
$$M_{ij} = M_{ij}^{Re} + M_{ij}^{Im}$$

 $(C_{\text{ground}_\text{truth}})^2$

Funnel-shape

Mask reformulation of the resolvent commutativity

$$E(C_{12}) = \left\| C_{12} R(\Delta_1^{\gamma}) - R(\Delta_2^{\gamma}) C_{12} \right\|_F^2 = \sum_{(i,j)} M_{ij} C_{12}^2$$

 $\Lambda \gamma \Gamma$

$$\gamma = 0.25$$
 $\gamma = 0.5$ $\gamma = 0.75$ $\gamma = 1$

Penalty mask v.s. ground-truth functional map

Standard mask

Slanted mask

Resolvent mask $\gamma = 0.5$

Mean squared ground-truth

"Partial Functional Correspondences" Rodolà et al

Slide 27 out of 33

Results: Stability (example)

k = 50 k = 100 k = 300

Standard

Given one pair of descriptors Compute a $k \times k$ functional map k^2 variables!

k = 50 k = 100 k = 300

Slanted

Resolvent

Results: Stability (summary)

FAUST

per-vertex measure

Slide 29 out of 33

Results: Accuracy (example)

Given one pair of descriptors Compute a 100×100 functional map

Standard

Slanted

Resolvent

Ground-truth

Results: Accuracy (summary)

TOSCA

Results: Correlation (fMap penalty v.s. pMap accuracy)

Summary

- Shape matching functional map pipeline
- Laplacian commutativity widely used
- Drawbacks of the standard Laplacian commutativity
 - Unbounded in the smooth setting
 - Not aligned with the ground-truth functional map
- Propose the resolvent Laplacian commutativity
 - Bounded operator
 - Aligned with the funnel shape
- Results
 - Better accuracy
 - Better stability

Slide 34 out of 33

Structured Regularization of Functional Map Computations

Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov KAUST, École Polytechnique

Convergence the resolvent Laplacian

Lemma 2. Let Δ_1 and Δ_2 be Laplacians on compact, connected, oriented surfaces M_1 and M_2 , respectively. Let $C_{12}: L_2(M_1) \rightarrow L_2(M_2)$ be a bounded operator. If $\gamma > \frac{1}{2}$, then:

$$\|C_{12}R_{\mu}(\Delta_{1}^{\gamma}) - R_{\mu}(\Delta_{2}^{\gamma})C_{12}\|_{HS}^{2} < \infty$$

Where μ is any complex number not on the non-negative real line.

Reformulate the Laplacian-Commutativity term

 $E(C_{12}) = \|C_{12}\Delta_1 - \Delta_2 C_{12}\|_F^2$ $= \|C_{12} \operatorname{diag}(\Lambda_1) - \operatorname{diag}(\Lambda_2)C_{12}\|_F^2$ $= \left\| C_{12} \otimes \left(\mathbb{1}_{k_2} \Lambda_1^T \right) - \left(\Lambda_2 \mathbb{1}_{k_1}^T \right) \otimes C_{12} \right\|_{F}^2$ $= \left\| \left(1_{k_2} \Lambda_1^T - \Lambda_2 1_{k_1}^T \right) \otimes C_{12} \right\|_{E}^{2}$ $=\sum_{(i,j)}M\otimes(C_{12})^2$

Note: \otimes is the entry-wise matrix multiplication

Results: Stability (summary)

FAUST

per-vertex measure

FAUST direct measure

Slide 38 out of 33

Results: Accuracy (example)

Given one pair of descriptors Compute a 100×100 functional map Corresponding point-wise map

Ground-truth

Standard

Source

Slanted

Resolvent

Unboundedness Example

Unbounded standard Laplacian-Commutativity

$\|M_{\text{standard}}\|_F^2$ w.r.t. increasing size of M_{standard}

Resolvent operator

Definition 1 (Resolvent) Let *A* be a closed operator on some Hilbert space. Let $\rho(A)$ be the set of all complex numbers μ such that $R_{\mu}(A) = (A - \mu I)^{-1}$ is defined and bounded. $\rho(A)$: the resolvent set of operator *A* $R_{\mu}(A)$: the resolvent operator of *A* at μ

- Given Laplace–Beltrami operator Δ
- Define $R_{a+ib}(\Delta^{\gamma})$, the resolvent operator of Δ^{γ} at (a + bi)
 - (Parameters $\gamma = \frac{1}{2}, a = 0, b = \overline{1}$)
- $R_{a+ib}(\Delta^{\gamma})$ is well-defined and bounded for any (a + ib) not in the non-negative real line (where the spectra of Δ^{γ} lies in)