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Shape Matching

• Point-based methods
• [Bronstein et al. 2006], 
• [Huang et. Al 2008]…

• Parameterization-based methods 
• [Lipman and Funkhouser 2009]
• [Aigerman et al. 2017]…

• Optimal transport
• [Solomon et al. 2016]
• [Mandad et al. 2017]…

• Functional maps
• [Ovsjanikov et al. 2012]
• [Ezuz and Ben-Chen 2017]…

• …

𝑥 𝑦

Source Target
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Functional map pipeline
Eigenfunctions of Laplace-Beltrami Operator

Shape 𝑆

Helmholtz equation
∆%𝑓 = 𝜆𝑓

𝜙*% 𝜙+% 𝜙,% 𝜙-% 𝜙.%

⋯ ⋯

0 = 𝜆*% 𝜆+% 𝜆,% 𝜆-% 𝜆.%≤ ≤ ≤ ⋯ ⋯ ≤
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Functional map pipeline

𝜙*% 𝜙+% 𝜙,% 𝜙-% 𝜙.%

⋯ ⋯

Function space basis

Shape 𝑆

function 𝑓

𝑓 ≈ 𝑎* +𝑎+ +𝑎, +𝑎- +𝑎.

𝑓 ≈ 𝑎*𝜙*% + 𝑎+𝜙+% + ⋯𝑎.𝜙.% = Φ%𝑎
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Functional map pipeline
Functional map definition

𝑆*

𝑓

𝑆+

𝑔

Φ%7

𝑓 ≈ Φ%8𝑎

𝑔 ≈ Φ%7𝑏

𝐶𝑎 = 𝑏

functional map: the matrix 𝐶
that transports the coefficients
from Φ%8 to Φ%7

Φ%8
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𝑓

Functional map 𝐶

=

𝑏

𝑎 = Φ%8 ;𝑓

𝑎

<𝑔 = Φ%7𝑏

Functional map pipeline
Slide 6 out of 33



=

𝑏

𝑓

Functional map 𝐶

𝑎 = Φ%8 ;𝑓

𝑎

<𝑔 = Φ%7𝑏

Functional map pipeline
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Functional map pipeline

𝐶*+∗ = argmin
D

𝐶𝐴 − 𝐵 H
+ Descriptor preservation

[OBCS*12]

+𝑤* 𝐶Δ* − Δ+𝐶 H
+ Laplacian commutativity

[OBCS*12]

+𝑤+ 𝐶Ω*LMNOP − Ω+LMNOP𝐶 H
+ Multiplicative operators

[NO17]

+𝑤, 𝐶Ω*QRPSTO − Ω+QRPSTO𝐶 H
+ Orientation preservation

[RPWO18]

+⋯
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Outline

• Laplacian commutativity – widely used
• Drawbacks of the standard Laplacian commutativity
• Unbounded in the smooth setting
• Not aligned with the ground-truth functional map

• Propose the resolvent Laplacian commutativity
• Bounded operator
• Better aligned

• Quantitative results
• Better stability
• Better accuracy
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Reformulate the Laplacian-Commutativity term

𝐸(𝐶) = 𝐶Δ* − Δ+𝐶 H
+

= 𝐶diag Λ* − diag Λ+ 𝐶 H
+

= Z
(-,\)

𝑀-\𝐶-\+

Mask 𝑀

where𝑀-\ = 𝜆\
%8 − 𝜆-

%7
+
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Applications of the Laplacian commutativity

(a) (b) (c) (d)

...

...

...

Figure 1: Overview of the proposed framework. (a) the original image and its super-pixel representation; (b) the first few Laplacian
eigenfunctions, visualized on the image super-pixels; (c) the functional maps between images which satisfy cycle-consistency; (d) The final
segmentation functions and the corresponding binary results after thresholding.

pixels. Define a function f : Pi → R that assigns each
super-pixel p ∈ Pi to a real value fi(p). Let F i denote the
space of all functions on Pi. It is clear that F i

∼= RK is a
linear space of dimension K. Any segmentation Oi ∈ Pi

corresponds to a binary indicator function fOi ∈ F i where
fOi(p) = 1 , ∀p ∈ Oi, and fOi(p) = 0 , ∀p ∈ Pi \ Oi. On
the other hand, any function f ∈ F i induces a segmentation
Oi = {p|f(p) > ti}, given a properly chosen threshold ti.
Reduced functional space. To improve efficiency, we
reduce the search space of segmentation indicator functions
to a subspace Fi ⊂ F i of dimension M < K for each image
Ii, spanned by a basis Bi = (b1i , · · · , bMi ). In the following,
we use f to denote the coefficients of f with respect to Bi.
In other words, f =

∑M
j=1 fjb

j
i = Bif . Please see §4 for

details.
Functional map. Relations between images can be easily
described as linear functional maps in the functional setting.
Specifically, a functional map from Fi to Fj is given by
a matrix Xij ∈ RM×M , where Xij maps a function f ∈
Fi with coefficient vector f to the function f ′ ∈ Fj with
coefficient vector f ′ = Xijf . We refer the reader to [16] for
a more detailed introduction and intuition. In §5, we show
how to adapt this framework to the image setting.
Cycle consistency. In the functional setting, the cycle-
consistency constraint can be described as the fact that a
transported function along any loop should be identical to
the original function. Suppose we are given a connected
directed graph G that connects some pairs of images in I.
Denote Xij : Fi → Fj as the functional map associated
with edge (i, j) ∈ G. Let C denote the space of all cycles in
G, then the cycle consistency constraint can be described as

Xiki0 · · ·Xi1i2Xi0i1f = f
∀(Ii0 , Ii1 , · · · , Iik) ∈ C, f ∈ Fi0 .

(1)

Computationally, it is difficult to account for all the loops
and high-order constraints in Eq. 1. Instead, we introduce
a latent basis Yi = (y1

i , · · · ,yM
i ) for each image Ii. This

latent space is expected to include functions that are consis-
tent across multiple images, e.g., segmentation functions of

the underlying objects. With this setup, we simply constrain
that Xij are consistent with these latent basis, i.e.,

XijYi = Yj , ∀(i, j) ∈ G. (2)

It is easy to see that Eq. 2 is equivalent to Eq. 1 since
for any function fg in the global coordinate system and its
coefficient vector f = Yi0fg ∈ Fi0 , we have

Xiki0 · · ·Xi1i2Xi0i1f = Xiki0 · · ·Xi1i2Xi0i1Yi0fg

= Xiki0Yik fg = Yi0fg = f .

3.2. Approach overview
The proposed approach proceeds in three stages (Fig. 1).

The first stage computes a reduced functional space on each
image. The second stage optimizes consistent functional
maps between pairs of images. The objective function
combines a term that quantifies the quality of pair-wise func-
tional maps, and another term that enforces the consistency
among all functional maps. Given these consistent func-
tional maps, the final stage generates the segmentations by
jointly optimizing segmentation functions that (i) align with
the segmentation clues on each image and (ii) are consistent
with neighboring image segmentations after transportation
by functional maps. This optimization problem can easily
incorporate supervision information when some of the im-
ages have ground-truth segmentations.

4. Reduced Functional Spaces
We choose Fi as the eigen-space spanned by the first

M eigenvectors of the normalized graph Laplacian Li ∈
RK×K , motivated by some practical success of using these
eigenvectors or combinations of them as segmentation in-
dicator functions [20]. An important distinction of the
proposed approach from previous methods is that we do not
commit to any segmentation indicator function at this stage.
Instead, these are jointly selected later over all input images
using optimized functional maps.

The segmentation functions can be approximated well
in the reduced eigen-space. Fig. 2 shows that when M =

(a) (b) (c) (d)

“Image Co-Segmentation via Consistent Functional Maps”
Fan Wang, Qixing Huang, Leonidas J. Guibas

(a) (b)

Figure 4: The functional map (a) with and (b) without commuta-
tivity regularization.

all experiments. With this setup, we formulate the map
consistency term as
f cons =

∑

(i,j)∈G

wijf
cons
ij =

∑

(i,j)∈G

wij∥XijYi − Yj∥2F , (6)

where ∥ · ∥F denotes the Frobenius norm.
Note that merely minimizing Eq. 6 would force the Yi to

be zero matrices. We thus impose an additional constraint
Y TY = Im, where the latent basis matrix Y is simply
(Y T

1 , · · · , Y T
N )T . This ensures that the columns of Y are

linearly independent, favoring solutions of Yi that are not
rank-deficient.

5.5. Optimization
Combining Eq. 4-6, we arrive at the following optimiza-

tion problem for computing consistent functional maps:
min

∑

(i,j)∈G

wij

(
f feature
ij + µf reg

ij + λf cons
ij

)

s.t. Y TY = Im, (7)
where λ and µ control the tradeoffs between different ob-
jective terms. For all the experiments, we set λ = 10and
µ = 40. The effect of the consistency term is shown in
Fig. 5 and a segmentation function transferred along a cycle
is illustrated in Fig. 6.

To effectively solve Eq. 7, we use an alternating op-
timization strategy, which decouples the optimization of
{Xij , (i, j) ∈ G} from the optimization of Y , leading to
subproblems that are much easier to solve.

Optimizing functional maps Xij . When the latent basis
matrix Y is fixed, Xij can be optimized independently, i.e.,
the optimal value of Xij is given by

X⋆
ij = argmin

X

(
f feature
ij + µf reg

ij + λf cons
ij

)
. (8)

Eq. 8 is a quadratic program, and we use SeDuMi [1] to
solve it efficiently. In the first iteration where the latent basis
matrix Y is unknown, we set λ = 0.

Optimizing latent basis matrix Y . When the functional
maps Xij are fixed, Eq. 7 for solving the latent basis matrix
Y becomes

min trace(Y TWY )

s.t. Y TY = Im, (9)

(b)
test images

(c) without
consistency

(d) with
consistency

(a)
training image

Figure 5: (a) Training image with ground truth segmentation; (b)
test images; segmentation results transferred from (a) through the
maps obtained by Eq. 7 without the consistency term in (c) and
with the consistency term in (d).

(a) example image cycle (b) w/o consistency (c) w/ consistency

Figure 6: Given a cycle of 3 images in (a), the segmentation
function of the first image is transferred along the cycle. The
final function transferred back looks like the original one more
in (c) when the maps are consistent than that in (b) when map
consistency is not enforced.

where matrix W ∈ RNM×NM consists of N × N blocks,
with the (i, j)-th block

Wij =

⎧
⎪⎨

⎪⎩

∑
(i,j′)∈G

wij′(Im +XT
ij′Xij′) i = j

− wij(Xji +XT
ij) (i, j) ∈ G

0 otherwise.

The following proposition provides the analytical solu-
tions to Eq. 9:

Proposition 1 Denote by σ1 ≤ · · · ≤ σm the first m
eigenvalues of W . Let U = (u1, · · · ,um) collect the
corresponding eigenvectors. The optimal solution to Eq. 9
is given by

Y = UV, ∀ V ∈ O(m), (10)

where O(m) denotes the space of all orthonormal matrices
of dimension m × m.

It is clear that the value of ∥XijYi − Yj∥2F is invariant
for any orthonormal V . We simply set the optimal value
Y ⋆ = U .

Stopping criterion. Let X(k)
ij denote the value of Xij at

iteration k. We alternate between the optimization of Xij

and Y until ∥X(k+1)
ij − X(k)

ij ∥F/∥X(1)
ij ∥F < 10−6, ∀(i, j) ∈

G.
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Applications of the Laplacian commutativity

“Partial Functional Correspondence”
E. Rodolà , L. Cosmo, M.M. Bronstein,
A.Torsello, D. Cremers

𝜌_QRR 𝐶 =Z
-\

𝑊-\𝐶-\+ + ⋯

Slide 12 out of 33



-Unboundedness
-in the full LB basis (of smooth manifolds)

𝐶*+Δ* − Δ+𝐶*+ + → ∞

-Structure misalignment

Drawbacks of the Laplacian commutativity
Slide 13 out of 33
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Unboundedness Example

𝑆*: Δ*

𝑆+: Δ+ = 𝑐Δ*
𝑐 ≠ 1

𝐶*+Δ* − Δ+𝐶*+ + = 𝑐 − 1 + Δ* H
+

→ ∞
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Structure misalignment

Mask𝑀cOdTedRe (𝐶jRQMTe_ORMOl)+

Funnel-shapewhere𝑀-\ = 𝜆\
%8 − 𝜆-

%7
+

Slide 16 out of 33



Our solution

-Boundedness: Δ → resolvent of Δ
-Structure alignment: Δ → Δm
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Resolvent operator

Let 𝐴 be a possibly unbounded linear operator (with some 
technical assumption), the resolvent of 𝐴 at 𝜇 is defined as

𝑅p 𝐴 = 𝐴 − 𝜇𝐼 r*

• 𝜇 is a complex number
• 𝑅p 𝐴 is defined for all 𝜇 NOT in the spectrum of 𝐴

𝑅st-u Δ is well-defined for any (𝑎 + 𝑖𝑏) NOT in the non-
negative real line (which contains the spectrum of Δ)

Definition
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Resolvent operator

Important tool in operator theory
• Spectral theory: used in the definition of spectrum 
• Unbounded self-adjoint operators: norm-resolvent 
convergence 𝑑 𝐴, 𝐵 = ‖𝑅p 𝐴 − 𝑅p 𝐵 ‖

Applications
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Bounded resolvent Laplacian-Commutativity

Theorem 1 (Bounded Resolvent Commutativity) Let 𝐶*+ be a 
bounded functional map. Then in the operator norm,

𝐶*+𝑅 Δ*
m − 𝑅 Δ+

m 𝐶*+ Qy
+
< ∞
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• Δ → standard Laplacian commutator
• 𝑅st-u Δm : well-defined and bounded
• Introduce 𝛾 to tune the structure of the mask
• Our resolvent Laplacian commutator

𝐸 𝐶*+ = 𝐶*+Δ* − Δ+𝐶*+ H
+ = 𝐶*+𝑅 Δ*

m − 𝑅 Δ+
m 𝐶*+ H

+

Bounded resolvent Laplacian-Commutativity
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Resolvent mask
• Δ has eigenvalues 𝜆.

• 𝑅- ∆*/+ has eigenvalues

Mask𝑀cOdTedRe

𝑀-\ = 𝜆\
%8 − 𝜆-

%7
+ 𝑀-\

}L = *
~�
�8t*

− *
~�
�7t*

+

Imaginary partReal part

𝑀-\
�S =

~�
�8

~�
�8t*

−
~�
�7

~�
�7t*

+

<latexit sha1_base64="3FKQAWQVBE7hovuYzPBWaNSXfLk="></latexit>

* Def: 𝑅p 𝐴 = 𝐴 − 𝜇𝐼 r*
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Resolvent mask

Mask𝑀RScQN�STO (𝐶jRQMTe_ORMOl)+

Funnel-shapewhere𝑀-\ = 𝑀-\
�S + 𝑀-\

}L

𝐶*+𝑅 Δ*
m − 𝑅 Δ+

m 𝐶*+ H
+
=Z

-,\

𝑀-\𝐶*++
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𝛾 = 0.25 𝛾 = 0.5 𝛾 = 0.75 𝛾 = 1

Mask reformulation of the resolvent commutativity

𝐸 𝐶*+ = 𝐶*+𝑅 Δ*
m − 𝑅 Δ+

m 𝐶*+ H
+ = Z

(-,\)

𝑀-\𝐶*++
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Standard mask Resolvent mask
𝛾 = 0.5

Mean squared 
ground-truthSlanted mask

“Partial Functional 
Correspondences” 

Rodolà et al

Penalty mask v.s. ground-truth functional map
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𝑘 = 300

Results: Stability (example)
Given one pair of descriptors
Compute a 𝑘×𝑘 functional map
𝑘+ variables!

Standard ResolventSlanted 

𝑘 = 100 𝑘 = 300 𝑘 = 50 𝑘 = 100 𝑘 = 50 𝑘 = 100 𝑘 = 300𝑘 = 50

Source
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Results: Stability (summary)
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Results: Accuracy (example)

Standard Resolvent Ground-truth Slanted 

Given one pair of descriptors
Compute a 100×100 functional map
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Results: Accuracy (summary)
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Results: Correlation (fMap penalty v.s. pMap accuracy)
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Results: Stability under remeshing and coarsening

Source

Target

𝑛� = 6890 𝑛� = 200 𝑛� = 300 𝑛� = 500 𝑛� = 1000 𝑛� = 3000 𝑛� = 5000 𝑛� = 6890

Standard
Mask

Ours
Complex

Mask

Solve for 
100×100
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Summary

• Shape matching – functional map pipeline
• Laplacian commutativity – widely used
• Drawbacks of the standard Laplacian commutativity
• Unbounded in the smooth setting
• Not aligned with the ground-truth functional map

• Propose the resolvent Laplacian commutativity
• Bounded operator
• Aligned with the funnel shape

• Results
• Better accuracy
• Better stability
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Thanks for your attention      

Structured Regularization of 
Functional Map Computations
Jing Ren, Mikhail Panine, Peter Wonka, Maks Ovsjanikov
KAUST, École Polytechnique

Sample code

Slide 34 out of 33



Lemma 2. Let Δ* and Δ+ be Laplacians on compact, 
connected, oriented surfaces  𝑀* and  𝑀+, respectively. Let  
𝐶*+: 𝐿+ 𝑀* → 𝐿+(𝑀+) be a bounded operator. If  𝛾 > *

+
, then:

‖𝐶*+𝑅p Δ*
m − 𝑅p Δ+

m 𝐶*+ ‖�%+ < ∞

Where  𝜇 is any complex number not on the non-negative 
real line.

Convergence the resolvent Laplacian
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Reformulate the Laplacian-Commutativity term

𝐸(𝐶*+) = 𝐶*+Δ* − Δ+𝐶*+ H
+

= 𝐶*+diag Λ* − diag Λ+ 𝐶*+ H
+

= 𝐶*+⨂ 1.7Λ*
� − Λ+1.8

� ⨂𝐶*+ H

+

= 1.7Λ*
� − Λ+1.8

� ⨂𝐶*+ H

+

= Z
(-,\)

𝑀⨂ 𝐶*+ +

Note: ⨂ is the entry-wise matrix multiplication
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Results: Stability (summary)
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Given one pair of descriptors
Compute a 100×100 functional map
Corresponding point-wise map

Source

Results: Accuracy (example)

Standard Slanted Resolvent Ground-truth 
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Unbounded standard Laplacian-Commutativity
template
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Resolvent operator

Definition 1 (Resolvent) Let 𝐴 be a closed operator on some 
Hilbert space. Let 𝜌(𝐴) be the set of all complex numbers 𝜇
such that 𝑅p 𝐴 = 𝐴 − 𝜇𝐼 r* is defined and bounded.
𝜌(𝐴): the resolvent set of operator 𝐴
𝑅p 𝐴 : the resolvent operator of 𝐴 at 𝜇

• Given Laplace-Beltrami operator Δ
• Define 𝑅st-u(∆m), the resolvent operator of ∆m at (𝑎 + 𝑏𝑖)

• (Parameters 𝛾 = *
+
, 𝑎 = 0, 𝑏 = 1) 

• 𝑅st-u ∆m is well-defined and bounded for any (𝑎 + 𝑖𝑏) not in 
the non-negative real line (where the spectra of Δm lies in)
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