Continuous and Orientation-preserving Correspondences via Functional Maps

Jing Ren, KAUST Adrien Poulenard, École Polytechnique Peter Wonka, KAUST Maks Ovsjanikov, École Polytechnique

Shape matching

Corresponding descriptors

Problems

Left-right ambiguity

Leg-arm ambiguity

How to break the symmetry ambiguity?

Our solution: define orientation-preserving operators in the functional map framework.

Q1: what is the standard functional map pipeline to solve the shape matching problem?

Q2: how to define the orientation-preserving operator? Why does it work?

Q1: Functional map pipeline

Laplacian-Beltrami operator

Q1: Functional map pipeline

Laplacian-Beltrami operator

function *f*

 \approx

9 of 3<u>0</u>

How to find *C* ?

Given a pair of shapes S_1, S_2 , with Laplacian operators $\Delta_{S_1}, \Delta_{S_2}$

- Compute the functional bases on the two shapes. Store them in matrices Φ^{S_1}, Φ^{S_2}
- Project the corresponding descriptors $\{f_i, g_i\}_{i=1}^k$ into the functional space. Store the coefficients in matrices $A = [a_1 \cdots a_k], B = [b_1 \cdots b_k]$
- Solve $C^* = \underset{C \in R^{k_T \times k_S}}{\operatorname{argmin}} E(C) = ||CA B||^2 + ||C\Delta_{S_1} \Delta_{S_2}C||^2$
- Orientation-preservation term $\sum_{i=1}^{k} \|C\Omega_{f_i} \Omega_{g_i}C\|^2$

 $\mathcal{T}_x(S_i)$: tangent space at $x \in S_i$

A smooth map T is orientation preserving if and only if dT is orientation preserving

Map differential dT: $\mathcal{T}_p(S_1) \rightarrow \mathcal{T}_q(S_2)$ Frame at $p: (w, v, n_p)$ Frame at $q = T(p): (dT(w), dT(v), n_{T(p)})$

 $(w \times v)^T n_p$ should have the same sign as $(dT(w) \times dT(v))^T n_{T(p)}$

Orientation-preserving operators - defects

Intrinsic – no guarantee

Induced – depends on the descriptors

Refinement! – iterative closest point (ICP)?

Problems of ICP:

- discontinuous
- Only in the spectral domain no spatial info

A better refinement to improve the quality?

Without ground-truth correspondences, how do we measure the quality of a map?

Refinement! – improve smoothness

smoother - better!

Refinement! – remove outliers

smoother (no outliers) – better!

Refinement! – improve coverage

Coverage: #vertex (or surface area) % covered by the map

Refinement! – improve bijectivity

Bijective and Continuous ICP (BCICP)

- Bijectivity
 - Soft constraints: $T_{21} \circ T_{12}$ and $T_{12} \circ T_{21}$ are close to identity
- Continuity
 - Smooth the displacement vector field

Coverage

• Find the nearest neighbor with the largest preimage size

• Outliers

 Detected by edge distortion and fixed by the nearest neighbor classified as an inlier

code

Benchmark datasets

FAUST dataset [Bogo et al. 2014]

- 10 different humans in 10 different poses
- We tested on
 - 200 isometric pairs
 - 400 non-isometric pairs

TOSCA dataset [Bronstein et al 2008]

- 80 different humans and animals in 9 categories
- We tested on
 - **568** isometric pairs
 - 190 non-isometric pairs

Results - FAUST Isometric dataset (200 pairs)

Solid lines: our methods (with different descriptors) Dashed lines: state-of-the-art methods

Results – TOSCA non–Isometric dataset (190 pairs)

Solid lines: our methods (with different descriptors) Dashed lines: state-of-the-art methods

Summary

- Introduce orientation-preserving operator into functional map framework
- Propose a refinement technique, BCICP, which improves the bijectivity, continuity, and coverage
- Verify the usefulness of the orientation-preserving operator and the BCICP refinement on large datasets, w.r.t. different measurements

Thanks for your attention ©

Continuous and Orientation-preserving Correspondences via Functional Maps

Jing Ren, KAUST Adrien Poulenard, École Polytechnique Peter Wonka, KAUST Maks Ovsjanikov, École Polytechnique

Supplementary

Results – Summary

Dataset (#pairs)	FAUST		TOSCA	
Measurement	lsometric 200	Non–isometric 400	lsometric 586	Non–isometric 190
Per-vertex	17.8%	24.1%	31.4%	38.3%
Per-map	17.5%	18.4%	14.6%	37.1%
Direct	17.5%	18.4%	38.8%	43.5%

Relative improvement of our method (directOp + BCICP) over the best baseline methods w.r.t. the average error of three measurements

Encode into functional map framework:

- Given a functional map C maps function on S_1 to function on S_2
- For every pair of corresponding descriptor $(f, g), f \in \mathcal{F}(S_1), g \in \mathcal{F}(S_2)$
- We can add the orientation-preserving constrain $C((\nabla f \times \nabla h)^T n_{S_1}) = (\nabla g \times \nabla C(h))^T n_{S_2}$
 - ∇f , ∇g : vector field on the source and target mesh resp.
 - *h*, *C*(*h*): functions defined on the source and target resp.
 - ∇h , $\nabla C(h)$: vector field
 - $(\nabla f \times \nabla h)^T n_{S_1}$ defines a function on the source
 - $(\nabla g \times \nabla C(h))^T n_{S_2}$ defines a function on the target
 - they should correspond to each other! use functional map to transport the function
- $C\left((\nabla f \times \nabla h)^T n_{S_1}\right) = \left(\nabla g \times \nabla C(h)\right)^T n_{S_2}$
- OrientationPreserving(C) for every pair of corresponding descriptors (f, g)

- Define $\omega(w, v, n) = (w \times v, n)$
- If *T* is orientation preserving, we have $\operatorname{sign}(\omega(w, v, n_p)) = \operatorname{sign}(\omega(dT(w), dT(v), n_{T(p)}))$ for any pair of $w, v \in \mathcal{T}_p(S_1)$, and for any vertex *p*

Encode into functional map framework:

- Given a pair of corresponding descriptor $(f, g), f \in \mathcal{F}(S_1), g \in \mathcal{F}(S_2)$
- $\forall h \in \mathcal{F}(S_1)$, it is mapped to $C(h) \in \mathcal{F}(S_2)$ via a functional map C
- Orientation-preserving:
 - For any point $p \in S_1$ (corresponds to $q \in S_2$ via C)
 - $\omega(\nabla f(p), \nabla h(p), n_p) \approx \omega(\nabla g(q), \nabla (C(h))(q), n_q)$
 - Define a function $\Omega(\cdot,\cdot,\cdot) \in \mathcal{F}(S_1)$ such that $\Omega(p) = \omega(\cdot_p,\cdot_p,\cdot_p)$
 - $C\left(\Omega(\nabla f, \nabla h, n_{S_1})\right) = \Omega(\nabla g, \nabla C(h), n_{S_2})$
- OrientationPreserving(C) for every pair of corresponding descriptors (f, g)

BCICP refinement – improve bijectivity

 S_2

Notation:

- Point-wise map (vector!) T_{12} : *i*-th vertex on S_1 is mapped to $T_{12}(i)$ -th vertex on S_2
- Shape S_i has Laplacian-Beltrami Basis Φ_i
- Functional map (matrix!) C_{12} : maps the functional space $\mathcal{F}(S_1|\Phi_1)$ to $\mathcal{F}(S_2|\Phi_2)$

Recall ICP:

- C_{12} is associated with T_{21}
 - Arbitrary function $f \in \mathcal{F}(S_1)$ can be transported to S_2 in two ways:
 - Using the point-wise map directly, i.e., $g = f(T_{21}) \in \mathcal{F}(S_2)$
 - Use the functional map, i.e., $g = \Phi_2 \left(C_{12} \left(\Phi_1^{\dagger} f \right) \right)$
- Two transportations should give similar result for any f
- Minimize $\|\Phi_2 C_{12} \Phi_1 (T_{21}, :)\|^2$
 - ICP: alternatively solve for C_{12} and T_{21}

BCICP refinement – improve bijectivity

• $\|\Phi_2 C_{12} - \Phi_1 (T_{21}, :)\|^2 + \|\Phi_2 C_{21} - \Phi_1 (T_{12}, :)\|^2$

Bijective in the spatial domain:

- $T_{21} \circ T_{12}$: maps S_1 to itself (S_1)
- We can add a similar term $\|\Phi_1 C_{11} \Phi_1 (T_{21} \circ T_{12}, :)\|^2$
 - where C_{11} is an auxiliary variable, maps the functional space $\mathcal{F}(S_1|\Phi_1)$ to itself
- We can similarly define the energy for $T_{12} \circ T_{21}$

New energy

$$\begin{split} \lambda_1 \| \Phi_2 C_{12} - \Phi_1 (T_{21},:) \|^2 \\ + \lambda_2 \| \Phi_2 C_{21} - \Phi_1 (T_{12},:) \|^2 \\ + \lambda_3 \| \Phi_1 C_{11} - \Phi_1 (T_{21} \circ T_{12},:) \|^2 \\ + \lambda_4 \| \Phi_2 C_{22} - \Phi_2 (T_{12} \circ T_{21},:) \|^2 \end{split}$$

BCICP refinement – improve bijectivity

ICP energy $\|\Phi_2 C_{12} - \Phi_1(T_{21}, :)\|^2$

New energy $\lambda_1 \| \Phi_2 C_{12} - \Phi_1 (T_{21}, :) \|^2$ $+ \lambda_2 \| \Phi_2 C_{21} - \Phi_1 (T_{12}, :) \|^2$ $+ \lambda_3 \| \Phi_1 C_{11} - \Phi_1 (T_{21} \circ T_{12}, :) \|^2$ $+ \lambda_4 \| \Phi_2 C_{22} - \Phi_2 (T_{12} \circ T_{21}, :) \|^2$

BCICP refinement – improve smoothness

BCICP refinement – improve smoothness

[Papazov and Burschka 2011]

41 of 30

BCICP refinement – improve smoothness

BCICP refinement – remove outliers

Compute the edge distortion $r = d_2/d_1$

Remove these edges from the adjacency matrix of the mesh

Find the largest connected component

Find the outlier region Outlier "trustw

Outlier – find its NN in the "trustworthy" vertex set

BCICP refinement – improve coverage

• *d*: geodesic distance between *p* and $T_{21}(T_{12}(p))$

• Measure the difference between $T_{21}(T_{12}(\cdot))$ and the identity map 45 of 30

Measurement – Smoothness

edge distortion ratio to measure the smoothness

Refinement

Heuristic measurement

- High bijectivity
- High smoothness
 - No outliers
 - High coverage

Our solution – bijective and continuous ICP (BCICP)

- Refine the map simultaneously in the spectral and the spatial domain
- Improve the bijectivity, continuity, and coverage

Q1: Functional map pipeline

Descriptors *f/g*

Frame at $p: (w, v, n_p)$ Map differential Frame at q = T(p): $(dT(w), dT(v), n_{T(p)})$ **d***T*: $\mathcal{T}_p(S_1) \to \mathcal{T}_q(S_2)$ $dT(w) \times dT(v)$ n_a q = T(p)w×v Order-preserving dT(v) n_p dT(v)dT(w)dT(w)Order-reversing $|n_q|$ $dT(w) \times dT(v)$ dT(v) S_1 S_2 dT(w) $(w \times v)^T n_p$ should have the same sign as $(dT(w) \times dT(v))^T n_{T(p)}$

50 of 30

Q1: Functional map pipeline

- First introduced by Ovsjanikov et al in 2012 : "Functional Maps: A Flexible Representation of Maps between Shapes"
- Map a function defined on the source shape to another function on the target
- The functions defined on the source/target shape are represented in a compressed form using the Laplacian-Beltrami basis