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Applications

• Social networks

• Protein-protein interaction

• Organizational hierarchy

• ……

• Connectivity graph of segmented 3D shapes

Graph Representation
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Segmented 3D shape Node: each segment
Edge: if connected Graph representation

Graph Representation
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𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Graph 𝐺 = (𝑉, 𝐸)

Vertex 𝑉 = 𝑣#,⋯ , 𝑣'

Edge 𝐸 = 𝑒#,⋯ , 𝑒' , 𝑒1 = (𝑣2, 𝑣3)

Embedding 𝑋

𝑥2 ∈ 𝑅" the position for vertex 𝑣2

𝑥& = (−0.98, 0.34)

𝑥' = (−0.98, −0.34)

𝑥# = (0, 0)

𝑥" = (0.33, 1.2)

𝑥$ = (1.22, 0)

𝑥% = (0.33, −1.2)

Graph Drawing
Problem formulation
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State-of-the-art

• Force-directed graph drawing
• graph → force system, equilibrium configurations → embedding

• Spectral drawing
• nodes that are connected to each other should have closer position

• Multidimensional Scaling (MDS)
• Preserve pair-wise graph distances.

• ……

Graph Drawing
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Force-directed method

𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Target 

Find equilibrium

Graph Drawing

Force system with springs and 
charged particles

𝑣%
𝑣" 𝑣#

𝑣$

𝑣&𝑣'

𝑓#" 𝑔$"

𝑓#$

𝐹%
𝑔 electrical 
repulsion 

𝑓 spring force
𝐹 net force

6 out of 28



𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

Objective: connected notes should be close-by

𝐸 = E
FG~FI

𝑥2 − 𝑥3
"

• 𝑋J𝑋 = 𝐼: avoid trivial solution
• 𝐸 = trace(𝑋J𝐿𝑋), where 𝐿 is the graph Laplacian
• Close-form solution: Eigenvectors of 𝐿

Spectral drawing
Graph Drawing Target 𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Target 
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Objective: preserve pair-wise graph distances

𝐸 = E
2R#

S

E
3R#

S

𝑤23 𝑥2 − 𝑥3 − 𝑑23
"

• Embedded Euclidean distance 𝑥2 − 𝑥3 close to 
graph distance 𝑑23

• Non-convex problem – Stress Majorization 
method

Multidimensional Scaling (MDS)
Graph Drawing

𝑣"

𝑣# 𝑣$

𝑣%

𝑣&

𝑣'

Target 𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Target 
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Graph Drawing

Connectivity 2D embedding

Single graph
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…

…

Graph Drawing
Multiple graphs
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• For each graph, the graph structure is preserved
• + Consistency: nodes from different graphs with the same 

label are in a nearby location 

…

Joint Graph Layouts

A

B C

D

…
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𝑥# 𝑥"

𝑥%

𝑥$

𝑦# 𝑦"

𝑦$

𝑦%

𝑦&𝑦'

𝑦W

Embedding: 𝑋 X = (𝑥#,⋯ , 𝑥%) Embedding: 𝑋 Y = (𝑦#,⋯ , 𝑦W)

Joint Graph Layouts
Correspondences
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(A): #
"
𝑥# + 𝑥" ≈ #

$
𝑦#+𝑦" + 𝑦$

(B): 𝑥$ ≈ 𝑦%
(C): 𝑥% ≈

#
"
(𝑦' + 𝑦W)

𝑆XY𝑋(X) ≈ 𝑇XY𝑋(Y)

𝑆XY =
^1 2 ^1 2
0
0

0
0

0 0
1
0

0
1

𝑇XY =
^1 3
0
0

^1 3
0
0

^1 3
0
0

0
1
0

0
0
0

0
0
^1 2

0
0
^1 2

where

Joint Graph Layouts
Correspondences
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Given a set of 𝐺1 1R#
S , find the embedding {𝑋(1)}

such that

• For each graph 𝐺1, graph structure is preserved

• For each pair of graphs (𝐺X, 𝐺Y), the correspondences 
are preserved 𝑆XY𝑋(X) ≈ 𝑇XY𝑋(Y).

Joint Graph Layouts
Formulation
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• Smoothness term

𝐸# 𝑋 =E
1

E
FG~FI

𝑋2
1 − 𝑋3

1
a

"

Joint Graph Layouts
Formulation

min
e(f)

𝜆#𝐸# + 𝜆"𝐸" + 𝜆$𝐸$

• Consistency term
𝐸" 𝑋 = E

#hXiYhS

𝜇XY(𝑆XY𝑋 X − 𝑇XY𝑋(Y)) a
"

• Distance preservation term

• 𝐸$ 𝑋 = ∑1R#S ∑#h2i3hlf 𝜆23
1 𝑋2

(1) − 𝑋3
(1) − 𝛿23

(1) "
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Joint Graph Layouts
Algorithms

• Objectives 

min
e(f)

𝜆#𝐸# + 𝜆"𝐸" + 𝜆$𝐸$

• Algorithms

• Step 01: spectral initialization

𝑋non = argmin
eqeRr

𝜆#𝐸# + 𝜆"𝐸"

• Step 02: stress majorization (starts with 𝑋non)
𝑋∗ = argmin 𝜆#𝐸# + 𝜆"𝐸" + 𝜆$𝐸$
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Joint Graph Layouts
Spectral Initialization

𝑋non = argmin
eqeRr

𝜆#𝐸# + 𝜆"𝐸" = argmin
eqeRr

trace( 𝑋J𝑊𝑋 )

𝑋non has close-form global minimizer: the eigenvectors
corresponding to the first two smallest eigenvalues of 𝑊. 
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Joint Graph Layouts
Spectral Initialization

body engine wing stabilizer rudder
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Joint Graph Layouts
Stress majorization

𝑥
𝑧

𝑔(𝑥|𝑧)𝑓(𝑥)Definition. 𝑔 𝑥 𝑧 is a majorizing function for 
𝑓(𝑥) if:

1) 𝑔 𝑥 𝑧 ≥ 𝑓 𝑥 , ∀𝑥

2) 𝑔 𝑧 𝑧 = 𝑓(𝑧)
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Joint Graph Layouts
Stress majorization

𝑥1

𝑥

𝑔(𝑥|𝑥1)

𝑥1y#

𝑥1y"

𝑔(𝑥|𝑥1y#)

𝑓(𝑥)Algorithm.

Input: 𝑓 𝑥 , 𝑔 𝑥 𝑧 , 𝑥non
Output: 𝑥∗ -- a local minimum of 𝑓 𝑥

For 𝑘 = 1,2, …
Solve 𝑥1 = argmin 𝑔(𝑥|𝑥1|#)
If 𝑥1 − 𝑥1|# ≤ 𝜖, return 𝑥∗ = 𝑥1

end
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Joint Graph Layouts
Stress majorization

Proposition. There exists a majorizing function 𝑔(𝑋|𝑍) for the 
total energy 

𝐹 𝑋 = 𝜆#𝐸#(𝑋) + 𝜆"𝐸"(𝑋) + 𝜆"𝐸$(𝑋)

21 out of 28



Joint Graph Layouts
Stress majorization

Spectral Ini iter 1 iter 5 iter 8 iter 10

foot upper leg lower leg head
hand upper arm lower arm body
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Joint Graph Layouts
Algorithms

…

…

…

Step 01: spectral initialization

Step 02: stress majorization

ear/horn head tail neck leg torso
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A

D

A B

C

B

C

Results 
Floor plans

D
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User Interface
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User study
Q1: Are the graphs in the collection the same or not?
Q2: Which graph is different from the rest?
Q3: Which graph collection has a larger variability?
……
Q7: Which subgraphs appear in the dominant structure of the given collection?

A

B

C

D

E

F

G

H

MDS Ours
26 out of 28



User study
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•Objective
• Consistently embed a set of graphs

• Formulation
• Smoothness term
• Consistency term
• Distance-preservation term

• Algorithms
• Spectral initialization: Eigen-decomposition
• Stress-majorization: solving a linear system for each iteration

Summary 
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Thanks for your attention      

Joint Graph Layouts for Visualizing 
Collections of Segmented Meshes

Jing Ren, Jens Schneider, Maks Ovsjanikov, Peter Wonka
KAUST, École Polytechnique

Sample code
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Results 
Scenes
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Results 
Segmented meshes
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A ours a = 2 a = 24 a = 60

MDS

a = 1 a = 8 a = 64

MDS

oursB

Results 
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Force-directed method
Graph Drawing

𝑣%
𝑣" 𝑣#

𝑣$

𝑣&𝑣'

𝑓#" 𝑔$"

𝑓#$

𝐹%

𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Target 

Edges:  springs – spring force 𝑓
Vertices: equally charged particles– electrical repulsion 𝑔
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𝐴 =
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𝑣"𝑣# 𝑣$ 𝑣% 𝑣& 𝑣'

𝑣"
𝑣#

𝑣$
𝑣%
𝑣&
𝑣'

𝐿 =
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𝑣"𝑣# 𝑣$ 𝑣% 𝑣& 𝑣'

𝑣"
𝑣#

𝑣$
𝑣%
𝑣&
𝑣'

Objective: the locations of the nodes that are connected to each other should 
be close.

𝐸 = E
FG,FI ∈�

𝑤23 𝑥2 − 𝑥3 "
" = trace( 𝑋J𝐿𝑋 )

𝐿 is the Laplacian matrix defined as 𝐿 = diag 𝐴𝟏 − 𝐴

The minimizer of
min

eqeRr�
trace( 𝑋J𝐿𝑋 )

is the eigenvectors of the Laplacian 𝐿 corresponding to the first smallest 𝑑
eigenvalues

Proposition

Note: by definition, 𝐿
1) is diagonally dominant ⟹ psd ⟹ all eigenvalues nonnegative
2) 𝐿𝟏 = 0𝟏⟹ 0 is an eigenvalue w.r.t eigenvector #

√S
𝟏

In general, we choose the eigenvectors w.r.t. nonzero eigenvalues

Spectral drawing method
Graph Drawing
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𝑣"

𝑣#

𝑣$

𝑣%

𝑣&
𝑣'

𝑣"

𝑣#

𝑣$

𝑣%

𝑣&

𝑣'

𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Target 

𝑑 = 2 𝑑 = 3

Spectral drawing method
Graph Drawing
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Objective: the graph distance between a pair of nodes can be regarded as a 
dissimilarity measure, therefore, we could use MDS to find an embedding to 
preserve the dissimilarities.

Assume the graph distance 𝑑 is given (can also be computed from matrix 𝐴), 
MDS tries to minimize:

𝐸 = E
2R#

S

E
3R#

S

𝑤23 𝑥2 − 𝑥3 − 𝑑23
"

Non-convex problem – Stress Majorization method
• Convergence to a local minimum is guaranteed
• Easy to solve for each iteration

𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'
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𝑣$
𝑣%
𝑣&
𝑣'

Multidimensional Scaling (MDS)
Graph Drawing
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𝑣"

𝑣#
𝑣$

𝑣%

𝑣&
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𝑣"

𝑣# 𝑣$

𝑣%

𝑣&

𝑣'

𝑣"

𝑣#
𝑣$ 𝑣%

𝑣&
𝑣'

Target 

𝑑 = 2
Classical MDS

𝑑 = 2
Metric MDS

Multidimensional Scaling (MDS)
Graph Drawing
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Tricks to construct majorizing function
Cauchy-Schwartz Inequality

The Cauchy Schwartz inequality:

𝑥 𝑧 ≥ 𝑥J𝑧 ⟹ − 𝑥 ≤ −
𝑥J𝑧
𝑧

Denote 𝑓 𝑥 = − 𝑥 , 𝑔 𝑥 𝑧 = − �q�
�

It’s easy to check: 𝑔 𝑥 𝑧 ≥ 𝑓 𝑥 and 𝑔 𝑧 𝑧 = 𝑓(𝑧)

Recall the energy of the MDS

E
2R#

S

E
3R#

S

𝑤23 𝑥2 − 𝑥3 − 𝑑23
"

It has terms −2𝑑23𝑤23 𝑥2 − 𝑥3
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Tricks to construct majorizing function
Via arithmetic-geometric mean Inequality

The arithmetic-geometric inequality:

𝑎𝑏 ≤
𝑎 + 𝑏
2 ⟹ 𝑎𝑏 ≤

𝑎" + 𝑏"

2

Let 𝑎 = 𝑥#
��
��
, 𝑏 = 𝑥"

��
��

, we have 

𝑓 𝑥#, 𝑥" = 𝑥#𝑥" ≤
1
2 𝑥#"

𝑧"
𝑧#
+ 𝑥""

𝑧#
𝑧"

≔ 𝑔(𝑥#, 𝑥"|𝑧#, 𝑧")

It’s easy to check: 𝑔 𝑧 𝑧 = 𝑓(𝑧)
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Tricks to construct majorizing function
Via the definition of convexity

For a set of points 𝑡2 2R#S and the sum-to-one weight 
𝑎2 2R#S , a convex function 𝑓 ⋅ satisfies:

𝑓 E
2R#

S

𝑎2𝑡2 ≤E
2R#

S

𝑎2𝑓(𝑡2)

Let 𝑡2 =
�G(�G|�G)

�G
+ ΘJ𝑧, 𝑎2 =

�G�G
�q�

, we have

𝑓 𝑥 = 𝑓 ΘJ𝑥 ≤E
2R#

S
𝜃2𝑧2
ΘJ𝑧

𝑓
𝑥2ΘJ𝑧
𝑧2

≔ 𝑔(𝑥|𝑧)

It’s easy to check: 𝑔 𝑧 𝑧 = 𝑓(𝑧)
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