Joint Graph Layouts for Visualizing Collections of Segmented Meshes

Jing Ren, Jens Schneider, Maks Ovsjanikov, Peter Wonka KAUST, École Polytechnique

Graph Representation

Applications

.

- Social networks
- Protein-protein interaction
- Organizational hierarchy

• Connectivity graph of segmented 3D shapes

Graph Representation

Segmented 3D shape

Node: each segment Edge: if connected

Graph representation

Problem formulation

Graph G = (V, E)

 $x_i \in \mathbb{R}^2$ the position for vertex v_i

Vertex $V = \{v_1, \dots, v_6\}$ Edge $E = \{e_1, \dots, e_6\}, e_k = (v_i, v_j)$

Graph Drawing State-of-the-art

• Force-directed graph drawing

- graph \rightarrow force system, equilibrium configurations \rightarrow embedding
- Spectral drawing
 - nodes that are connected to each other should have closer position
- Multidimensional Scaling (MDS)
 - Preserve pair-wise graph distances.
- •

Graph Drawing Force-directed method

Force system with springs and charged particles

Find equilibrium

Graph Drawing Spectral drawing

 v_2

 v_1

 v_4

 v_6

 v_5

Objective: connected notes should be close-by

$$E = \sum_{v_i \sim v_j} \left\| x_i - x_j \right\|^2$$

- $X^T X = I$: avoid trivial solution
- $E = \operatorname{trace}(X^T L X)$, where L is the graph Laplacian
- Close–form solution: Eigenvectors of *L*

 v_3

Multidimensional Scaling (MDS)

Objective: preserve pair-wise graph distances

$$E = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (||x_i - x_j|| - d_{ij})^2$$

- Embedded Euclidean distance $||x_i x_j||$ close to graph distance d_{ij}
- Non-convex problem Stress Majorization method

Graph Drawing Single graph

Graph Drawing Multiple graphs

- For each graph, the graph structure is preserved
- + Consistency: nodes from different graphs with the same label are in a nearby location

Correspondences

Correspondences

(A): $\frac{1}{2}(x_1 + x_2) \approx \frac{1}{3}(y_1 + y_2 + y_3)$ (B): $x_3 \approx y_4$ (C): $x_4 \approx \frac{1}{2}(y_6 + y_7)$

 $S_{pq}X^{(p)} \approx T_{pq}X^{(q)}$

where

$$S_{pq} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad T_{pq} = \begin{pmatrix} 1/3 & 1/3 & 1/3 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 1/2 & 1/2 \end{pmatrix}$$

Joint Graph Layouts Formulation

Given a set of $\{G_k\}_{k=1}^n$, find the embedding $\{X^{(k)}\}$ such that

• For each graph G_k, graph structure is preserved

• For each pair of graphs (G_p, G_q) , the correspondences are preserved $S_{pq}X^{(p)} \approx T_{pq}X^{(q)}$.

Formulation

• Smoothness term

$$E_1(X) = \sum_{k} \sum_{v_i \sim v_j} \left\| X_i^{(k)} - X_j^{(k)} \right\|_F^2$$

Consistency term

$$E_2(X) = \sum_{1 \le p < q \le n} \left\| \mu_{pq} (S_{pq} X^{(p)} - T_{pq} X^{(q)}) \right\|_F^2$$

• Distance preservation term

•
$$E_3(X) = \sum_{k=1}^n \sum_{1 \le i < j \le m_k} \lambda_{ij}^{(k)} \left(\left\| X_i^{(k)} - X_j^{(k)} \right\| - \delta_{ij}^{(k)} \right)^2$$

$$\min_{X^{(k)}} \lambda_1 E_1 + \lambda_2 E_2 + \lambda_3 E_3$$

Algorithms

Objectives

$$\min_{X^{(k)}} \lambda_1 E_1 + \lambda_2 E_2 + \lambda_3 E_3$$

- Algorithms
 - Step 01: spectral initialization

$$X_{\text{ini}} = \operatorname*{argmin}_{X^T X = I} \lambda_1 E_1 + \lambda_2 E_2$$

• Step 02: stress majorization (starts with *X*_{ini})

$$X^* = \operatorname{argmin} \, \lambda_1 E_1 + \lambda_2 E_2 + \lambda_3 E_3$$

Joint Graph Layouts Spectral Initialization

$$X_{\text{ini}} = \underset{X^T X = I}{\operatorname{argmin}} \lambda_1 E_1 + \lambda_2 E_2 = \underset{X^T X = I}{\operatorname{argmin}} \operatorname{trace}(X^T W X)$$

 X_{ini} has close-form global minimizer: the eigenvectors corresponding to the first two smallest eigenvalues of W.

Joint Graph Layouts Spectral Initialization

Stress majorization

Stress majorization

Stress majorization

Proposition. There exists a majorizing function g(X|Z) for the total energy $F(X) = \lambda_1 E_1(X) + \lambda_2 E_2(X) + \lambda_2 E_3(X)$

22 out of 28

23 out of 28

User Interface

'snc_airplane': 193 graphs, 1474 nodes, 1322 edges, ADJ --- FIN LBL LNM --- --- MNM --- --- MAT EPN ---

User study

Q1: Are the graphs in the collection the same or not?Q2: Which graph is different from the rest?Q3: Which graph collection has a larger variability?

Q7: Which subgraphs appear in the dominant structure of the given collection?

User study

Accuracy

Time

Summary

Objective

- Consistently embed a set of graphs
- Formulation
 - Smoothness term
 - Consistency term
 - Distance-preservation term
- Algorithms
 - Spectral initialization: Eigen-decomposition
 - Stress-majorization: solving a linear system for each iteration

Joint Graph Layouts for Visualizing Collections of Segmented Meshes

Jing Ren, Jens Schneider, Maks Ovsjanikov, Peter Wonka KAUST, École Polytechnique

Results Scenes

30 out of 28

Results

Segmented meshes

Results

Force-directed method

Edges: springs – spring force *f* Vertices: equally charged particles– electrical repulsion *g*

Spectral drawing method

Objective: the locations of the nodes that are connected to each other should be close.

$$E = \sum_{(v_{i}, v_{j}) \in E} w_{ij} \|x_{i} - x_{j}\|_{2}^{2} = \text{trace}(X^{T}LX)$$

L is the Laplacian matrix defined as $L = \text{diag}(A\mathbf{1}) - A$

Proposition

The minimizer of

min trace(
$$X^T L X$$
)

 $X^T X = I_d$ is the eigenvectors of the Laplacian *L* corresponding to the first smallest *d* eigenvalues

Note: by definition, *L*

- 1) is diagonally dominant \Rightarrow psd \Rightarrow all eigenvalues nonnegative
- 2) $L\mathbf{1} = 0\mathbf{1} \Longrightarrow 0$ is an eigenvalue w.r.t eigenvector $\frac{1}{\sqrt{n}}\mathbf{1}$

In general, we choose the eigenvectors w.r.t. nonzero eigenvalues

 $A = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{pmatrix}$

$$L = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 & v_5 & v_6 \\ 5 & -1 & -1 & -1 & -1 & -1 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 2 & -1 \\ -1 & 0 & 0 & 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \\ v_4 \\ v_5 \\ v_6 \end{pmatrix}$$

Multidimensional Scaling (MDS)

Objective: the graph distance between a pair of nodes can be regarded as a dissimilarity measure, therefore, we could use MDS to find an embedding to preserve the dissimilarities.

Assume the graph distance d is given (can also be computed from matrix A), MDS tries to minimize:

$$E = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (||x_i - x_j|| - d_{ij})^2$$

Non-convex problem – Stress Majorization method

- Convergence to a local minimum is guaranteed
- Easy to solve for each iteration

Graph Drawing v_2 Target v_3 v_4 Multidimensional Scaling (MDS) v_5 v_6 v_2 v_4 v_5 v_3 v_1 v_6 v_1 v_3 v_5 v_6 d = 2d = 2 v_4 v_2 **Classical MDS** Metric MDS

Tricks to construct majorizing function

Cauchy-Schwartz Inequality

The Cauchy Schwartz inequality:

$$||x|| ||z|| \ge x^T z \Longrightarrow -||x|| \le -\frac{x^T z}{||z||}$$

Denote
$$f(x) = -||x||, g(x|z) = -\frac{x^T z}{||z||}$$

It's easy to check: $g(x|z) \ge f(x)$ and g(z|z) = f(z)

Recall the energy of the MDS

$$\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} (\|x_i - x_j\| - d_{ij})^2$$

It has terms $-2d_{ij}w_{ij}\|x_i - x_j\|$

Tricks to construct majorizing function

Via arithmetic-geometric mean Inequality

The arithmetic-geometric inequality:

$$\sqrt{ab} \le \frac{a+b}{2} \Longrightarrow ab \le \frac{a^2+b^2}{2}$$

Let
$$a = x_1 \sqrt{\frac{z_2}{z_1}}, b = x_2 \sqrt{\frac{z_1}{z_2}}$$
, we have
 $f(x_1, x_2) = x_1 x_2 \le \frac{1}{2} \left(x_1^2 \frac{z_2}{z_1} + x_2^2 \frac{z_1}{z_2} \right) \coloneqq g(x_1, x_2 | z_1, z_2)$

It's easy to check: g(z|z) = f(z)

Tricks to construct majorizing function

Via the definition of convexity

For a set of points $\{t_i\}_{i=1}^n$ and the sum-to-one weight $\{a_i\}_{i=1}^n$, a convex function $f(\cdot)$ satisfies:

$$f\left(\sum_{i=1}^{n} a_i t_i\right) \le \sum_{i=1}^{n} a_i f(t_i)$$

Let
$$t_i = \frac{\theta_i(x_i - z_i)}{a_i} + \Theta^T z$$
, $a_i = \frac{\theta_i z_i}{\Theta^T z}$, we have
 $f(x) = f(\Theta^T x) \le \sum_{i=1}^n \frac{\theta_i z_i}{\Theta^T z} f\left(\frac{x_i \Theta^T z}{z_i}\right) \coloneqq g(x|z)$

It's easy to check: g(z|z) = f(z)

