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Graph Representation

Applications
* Social networks

* Protein—-protein interaction

« Organizational hierarchy

« Connectivity graph of segmented 3D shapes
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Graph Representation
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Graph Drawing
Problem formulation

Graph ¢ = (V,E)
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Graph Drawing
State-of-the-art

Force-directed graph drawing

« graph — force system, equilibrium configurations - embedding

Spectral drawing

« nodes that are connected to each other should have closer position

Multidimensional Scaling (MDS)

« Preserve pair-wise graph distances.
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Graph Drawing
Force-directed method
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Graph Drawing
Spectral drawing

Objective: connected notes should be close-by
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« XTX =1: avoid trivial solution

Vg

« E =trace(X'LX), where L is the graph Laplacian e

« Close-form solution: Eigenvectors of L
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Graph Drawing
Multidimensional Scaling (MDS)

Objective: preserve pair-wise graph distances
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» Embedded Euclidean distance ||x; — x;|| close to
graph distance d;;

« Non-convex problem - Stress Majorization
method

o v,
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Graph Drawing
Single graph
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Graph Drawing

Multiple graphs
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Joint Graph Layouts

« For each graph, the graph structure is preserved

« + Consistency: nodes from different graphs with the same
label are in a nearby location
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Joint Graph Layouts
Correspondences
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Embedding: X®) = (xy,-,x,) Embedding: X© = (y,,---,y,)
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Joint Graph Layouts

Correspondences
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Joint Graph Layouts
Formulation

Given a set of {G;}}-,, find the embedding {x*)}
such that

« For each graph G,, graph structure is preserved

» For each pair of graphs (G,, G,), the correspondences
are preserved S,, X ~ T, XD,
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Joint Graph Layouts
Formulation

min A E; + AL,E, + A3E,
x (k)

- Smoothness term

E;(X) =z Z ‘
K

Di~Vj

X — x® Hi

* Consistency term

B0 = ) [lipg(SpaX® = TpeX D)}
1sp<gsn

* Distance preservation term

c E5(X) = XY=y Z1si<jSmk /18'() (| Xi(k) B Xf(k) ” B 55{))2
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Joint Graph Layouts
Algorithms

* Objectives

min A4 E; + A, E5 + A3 E5
x (K

« Algorithms

« Step 01: spectral initialization

Xini = argmin A E; + A, E,
XTx=I
« Step 02: stress majorization (starts with Xj,;)
X* = argmin A,E; + 1,E, + 13E;
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Joint Graph Layouts
Spectral Initialization

Xin; = argmin A, E; + A, E, = argmin trace( X' WX )
xTx=I xTx=I

Xin; has close-form global minimizer: the eigenvectors
corresponding to the first two smallest eigenvalues of W.

17 out of 28



Joint Graph Layouts
Spectral Initialization
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Joint Graph Layouts
Stress majorization

Definition. g(x|z) is a majorizing function for
f(x) if:

1) g(x|z) = f(x), vx

\2) 9(z|z) = f(2)

N

f(x)

9(x|2)
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Joint Graph Layouts
Stress majorization

ﬁlgorithm. \ ) g(x|x*)
. :

Input: f(x), g(x|2), xin;

Output: x* -— a local minimum of f(x)

Fork=1,2,..
Solve x* = argmin g(x|x*™1)

If ||x* — x*7| <€, return x* = x*

o Y
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Joint Graph Layouts
Stress majorization

Proposition. There exists a majorizing function g(X|Z) for the
total energy
F(X) = 11E1(X) + 2,E2(X) + A, E3(X)

\_ J
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Joint Graph Layouts :thOtd @ upper leg Coe
Stress majorization
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Joint Graph Layouts
Algorithms

@ car/horn @ head @ tail @ neck @ leg

Step 01: spectral initialization
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Step 02: stress majorization
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Floor plans A o \. |
£ prad
outside porch] ®
’/mmm .ﬁ‘ - rma
amé\ ‘\/
(bathroom| edroom
v reading| \
e R g2l iay er bedroom!
,'\./\
/ AN [bathroom|
|
| A B
/
mk.}m

cac W
garage i Sk oom)

1) '/ \l\
CETITCE e

master bedroom \ L
bathroom | :
>

C - D
24 out of 28



User Interface
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User study
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User study
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Summary

* Objective
- Consistently embed a set of graphs

* Formulation
« Smoothness term
» Consistency term
e Distance-preservation term

« Algorithms
- Spectral initialization: Eigen-decomposition
« Stress—-majorization: solving a linear system for each iteration
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Thanks for your attention &)

Joint Graph Layouts for Visualizing
Collections of Segmented Meshes

Jing Ren, Jens Schneider, Maks Ovsjanikov, Peter Wonka
KAUST, Ecole Polytechnique

b Sample code
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Results
Scenes
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Results
Segmented meshes
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Results

A ours k a=2 a=24
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Graph Drawing

” Target
Force-directed method ]
fiz 932 F, Vg ’s
v\éz %1 ‘
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Edges: springs - spring force f

Vertices: equally charged particles- electrical repulsion g
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Graph Drawing
Spectral drawing method

V1 Uy U3 Uy Vs Vg

Objective: the locations of the nodes that are connected to each other should 011111\
be close. 1 00000 \v
2 4= 1 00000 |vs

E = Z Wl-j”xl- —xj||2=trace(XTLX) 1100000 |v,

(vi,vj)EE 1 000O01 Vs

1 000107 Vs

L is the Laplacian matrix defined as L = diag(41) — A

Proposition v, Uy Vs Uy Vs Vg

The minimizer of 5 -1 -1 -1 -1 =1\ v
min trace( XTLX) -1 1 0 0 0 0 \mv

XTX=Iq -1 0 1 0 0 0 |uvs

is the eigenvectors of the Laplacian L corresponding to the first smallest d L= 1.0 0 1 0 0 Va
eigenvalues -1 0 0 0 2 —-1] vg
-1 0 0 0 -1 2 Vs

Note: by definition, L
1) is diagonally dominant = psd = all eigenvalues nonnegative
2) L1 =01= 0isaneigenvalue w.r.t eigenvector \%1

In general, we choose the eigenvectors w.r.t. nonzero eigenvalues
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Graph Drawing

Spectral drawing method
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Graph Drawing
Multidimensional Scaling (MDS)

Vs
Objective: the graph distance between a pair of nodes can be regarded as a ®
dissimilarity measure, therefore, we could use MDS to find an embedding to Vs v
preserve the dissimilarities. (2 *
Assume the graph distance d is given (can also be computed from matrix 4), Vs
MDS tries to minimize: Vg
n n
2
E= > wy(llx—xl - dy)
i=1 j=1 V1 V2V3 Uy Vs Vg
011111\ v
1 02 2 2 2\7v;
Non-convex problem — p 12022 2 |vs
« Convergence to a local minimum is guaranteed 1122022 |y
. : 1 22 2 01 |vs
Easy to solve for each iteration {1 229210/ v
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Graph Drawing
Multidimensional Scaling (MDS)
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Tricks to construct majorizing function

Cauchy-Schwartz Inequality 3.
T
g(x|z) = —T;¢
The Cauchy Schwartz inequality: - I=]
T
xTz
Ixllllzll = x"z = —|lx|| < ~zl N

xTz
Denote f(x) = —||x]|, g(x|z) = izl

It’s easy to check: g(x|z) = f(x) and g(z|z) = f(2)

Recall the energy of the MDS

n n
2
> > wy(llx = x| - dy)

i=1 j=1

It has terms —ZdijWij“xi - x]“
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Tricks to construct majorizing function 15
Via arithmetic-geometric mean Inequality

g(x|z) = 5 (22 +232)

The arithmetic-geometric inequality:

a+b a® + b?
vab < = ab < Y
Leta—xl\/7 —xz\/7 we have
Z2
221
fQxy,x3) = x1%; < 2( Z_1 + X3 Zz) = g(x1,X2|21, 22)

It’s easy to check: g(z|z) = f(2)
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Tricks to construct majorizing function
Via the definition of convexity

For a set of points {t;};=; and the sum-to-one weight
{a;}i=, a convex function f(-) satisfies:

f (Z aiti> < ) af(t)

i=1

—_7 B.Z.
=t L 4+ 07z,q; = @)szl’ we have

n

0:z; .(x,0"
FO)= FO< Y szf(x 0

i=1

) = g(x|2)

Zi

It’s easy to check: g(z|z) = f(2)
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