Joint Graph Layouts

for Visualizing Collections of Segmented Meshes

Jing Ren, Jens Schneider, Maks Ovsjanikov, Peter Wonka KAUST, École Polytechnique

Graph Representation

Applications

- Social networks
- Protein-protein interaction
- Organizational hierarchy
-......
- Connectivity graph of segmented 3D shapes

Graph Representation

Segmented 3D shape

Node: each segment Edge: if connected

Graph representation

Graph Drawing

Problem formulation

Vertex $V=\left\{v_{1}, \cdots, v_{6}\right\}$
Edge $E=\left\{e_{1}, \cdots, e_{6}\right\}, e_{k}=\left(v_{i}, v_{j}\right)$

Embedding X

$x_{i} \in R^{2}$ the position for vertex v_{i}

Graph Drawing

State-of-the-art

- Force-directed graph drawing
- graph \rightarrow force system, equilibrium configurations \rightarrow embedding
- Spectral drawing
- nodes that are connected to each other should have closer position
- Multidimensional Scaling (MDS)
- Preserve pair-wise graph distances.
-

Graph Drawing

Force-directed method

Force system with springs and charged particles

Find equilibrium

Graph Drawing

Spectral drawing

Objective: connected notes should be close-by

$$
E=\sum_{v_{i} \sim v_{j}}\left\|x_{i}-x_{j}\right\|^{2}
$$

- $X^{T} X=I$: avoid trivial solution
- $E=\operatorname{trace}\left(X^{T} L X\right)$, where L is the graph Laplacian
- Close-form solution: Eigenvectors of L

Graph Drawing

Multidimensional Scaling (MDS)

Objective: preserve pair-wise graph distances

$$
E=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(\left\|x_{i}-x_{j}\right\|-d_{i j}\right)^{2}
$$

- Embedded Euclidean distance $\left\|x_{i}-x_{j}\right\|$ close to graph distance $d_{i j}$
- Non-convex problem - Stress Majorization method

Graph Drawing

Single graph

Graph Drawing
 Multiple graphs

Joint Graph Layouts

- For each graph, the graph structure is preserved
- + Consistency: nodes from different graphs with the same label are in a nearby location

Joint Graph Layouts

Correspondences

Embedding: $X^{(p)}=\left(x_{1}, \cdots, x_{4}\right)$

Joint Graph Layouts

Correspondences

(A): $\frac{1}{2}\left(x_{1}+x_{2}\right) \approx \frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right)$
(B): $x_{3} \approx y_{4}$
(C): $x_{4} \approx \frac{1}{2}\left(y_{6}+y_{7}\right)$

where

$$
S_{p q}=\left(\begin{array}{cccc}
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad T_{p q}=\left(\begin{array}{ccccccc}
1 / 31 / 31 / 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 / 21 / 2
\end{array}\right)
$$

Joint Graph Layouts

Formulation

Given a set of $\left\{G_{k}\right\}_{k=1}^{n}$, find the embedding $\left\{X^{(k)}\right\}$ such that

- For each graph G_{k}, graph structure is preserved
- For each pair of graphs $\left(G_{p}, G_{q}\right)$, the correspondences are preserved $S_{p q} X^{(p)} \approx T_{p q} X^{(q)}$.

Joint Graph Layouts

Formulation

$$
\min _{X^{(k)}} \lambda_{1} E_{1}+\lambda_{2} E_{2}+\lambda_{3} E_{3}
$$

- Smoothness term

$$
E_{1}(X)=\sum_{k} \sum_{v_{i} \sim v_{j}}\left\|X_{i}^{(k)}-X_{j}^{(k)}\right\|_{F}^{2}
$$

- Consistency term

$$
E_{2}(X)=\sum_{1 \leq p<q \leq n}\left\|\mu_{p q}\left(S_{p q} X^{(p)}-T_{p q} X^{(q)}\right)\right\|_{F}^{2}
$$

- Distance preservation term
- $E_{3}(X)=\sum_{k=1}^{n} \sum_{1 \leq i<j \leq m_{k}} \lambda_{i j}^{(k)}\left(\left\|X_{i}^{(k)}-X_{j}^{(k)}\right\|-\delta_{i j}^{(k)}\right)^{2}$

Joint Graph Layouts

Algorithms

- Objectives

$$
\min _{X^{(k)}} \lambda_{1} E_{1}+\lambda_{2} E_{2}+\lambda_{3} E_{3}
$$

- Algorithms
- Step 01: spectral initialization

$$
X_{\mathrm{ini}}=\underset{X^{T} X=I}{\operatorname{argmin}} \lambda_{1} E_{1}+\lambda_{2} E_{2}
$$

- Step 02: stress majorization (starts with $X_{\text {ini }}$)

$$
X^{*}=\operatorname{argmin} \lambda_{1} E_{1}+\lambda_{2} E_{2}+\lambda_{3} E_{3}
$$

Joint Graph Layouts

Spectral Initialization

$$
X_{\mathrm{ini}}=\underset{X^{T} X=I}{\operatorname{argmin}} \lambda_{1} E_{1}+\lambda_{2} E_{2}=\underset{X^{T} X=I}{\operatorname{argmin} \operatorname{trace}\left(X^{T} W X\right)}
$$

$X_{\text {ini }}$ has close-form global minimizer: the eigenvectors corresponding to the first two smallest eigenvalues of W.

Joint Graph Layouts

Spectral Initialization

engine
wingstabilizer
rudder

Joint Graph Layouts

Stress majorization

Definition. $g(x \mid z)$ is a majorizing function for $f(x)$ if:

1) $g(x \mid z) \geq f(x), \forall x$
2) $g(z \mid z)=f(z)$

Joint Graph Layouts

Stress majorization

Algorithm.

Input: $f(x), g(x \mid z), x_{\text {ini }}$
Output: $x^{*}--$ a local minimum of $f(x)$

For $k=1,2, \ldots$

$$
\begin{aligned}
& \text { Solve } x^{k}=\operatorname{argmin} g\left(x \mid x^{k-1}\right) \\
& \text { If }\left\|x^{k}-x^{k-1}\right\| \leq \epsilon \text {, return } x^{*}=x^{k}
\end{aligned}
$$

end

Joint Graph Layouts

Stress majorization

Proposition. There exists a majorizing function $g(X \mid Z)$ for the total energy

$$
F(X)=\lambda_{1} E_{1}(X)+\lambda_{2} E_{2}(X)+\lambda_{2} E_{3}(X)
$$

Joint Graph Layouts
Stress majorization
iter 1

iter 5

footupper leglower leg head - hand Oupperarm \bigcirc lowerarm \bigcirc body

Joint Graph Layouts

Algorithms

Step 01 : spectral initialization

Step 02: stress majorization

Results
 Floor plans

24 out of 28

User Interface

User study

Q1: Are the graphs in the collection the same or not?
Q2: Which graph is different from the rest?
Q3: Which graph collection has a larger variability?
Q7: Which subgraphs appear in the dominant structure of the given collection?

MDS

User study

Accuracy
Time

Summary

- Objective
- Consistently embed a set of graphs
- Formulation
- Smoothness term
- Consistency term
- Distance-preservation term
- Algorithms
- Spectral initialization: Eigen-decomposition
- Stress-majorization: solving a linear system for each iteration

Thanks for your attention ${ }^{8}$

Joint Graph Layouts for Visualizing Collections of Segmented Meshes

Jing Ren, Jens Schneider, Maks Ovsjanikov, Peter Wonka KAUST, École Polytechnique

Results

Scenes

Results

Segmented meshes

Results

Graph Drawing

Force-directed method

Edges: springs - spring force f
Vertices: equally charged particles- electrical repulsion g

Graph Drawing

Spectral drawing method

Objective: the locations of the nodes that are connected to each other should be close.

$$
E=\sum_{\left(v_{i}, v_{j}\right) \in E} w_{i j}\left\|x_{i}-x_{j}\right\|_{2}^{2}=\operatorname{trace}\left(X^{T} L X\right)
$$

L is the Laplacian matrix defined as $L=\operatorname{diag}(A \mathbf{1})-A$

$$
A=\left(\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0
\end{array}\right) v_{2} v_{3} v_{4} v_{5} v_{5}
$$

Proposition

The minimizer of

$$
\min _{X^{T} X=I_{d}} \operatorname{trace}\left(X^{T} L X\right)
$$

is the eigenvectors of the Laplacian L corresponding to the first smallest d eigenvalues

Note: by definition, L

1) is diagonally dominant \Rightarrow psd \Rightarrow all eigenvalues nonnegative
2) $L \mathbf{1}=\mathbf{0 1} \Longrightarrow 0$ is an eigenvalue w.r.t eigenvector $\frac{1}{\sqrt{n}} \mathbf{1}$

In general, we choose the eigenvectors w.r.t. nonzero eigenvalues

$$
L=\left(\begin{array}{cccccc}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\
5 & -1 & -1 & -1 & -1 & -1 \\
-1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & 2 & -1 \\
-1 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \begin{gathered}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{gathered}
$$

Graph Drawing

Spectral drawing method

$$
d=3
$$

$$
d=2
$$

Graph Drawing

Multidimensional Scaling (MDS)

Objective: the graph distance between a pair of nodes can be regarded as a dissimilarity measure, therefore, we could use MDS to find an embedding to preserve the dissimilarities.

Assume the graph distance d is given (can also be computed from matrix A), MDS tries to minimize:

$$
E=\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(\left\|x_{i}-x_{j}\right\|-d_{i j}\right)^{2}
$$

Non-convex problem - Stress Majorization method

- Convergence to a local minimum is guaranteed
- Easy to solve for each iteration

$$
d=\left(\begin{array}{llllll}
v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 & 2 & 2 \\
1 & 2 & 0 & 2 & 2 & 2 \\
1 & 2 & 2 & 0 & 2 & 2 \\
1 & 2 & 2 & 2 & 0 & 1 \\
1 & 2 & 2 & 2 & 1 & 0
\end{array}\right) v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}
$$

Graph Drawing

Multidimensional Scaling (MDS)

Tricks to construct majorizing function

Cauchy-Schwartz Inequality

The Cauchy Schwartz inequality:

$$
\|x\|\|z\| \geq x^{T} z \Rightarrow-\|x\| \leq-\frac{x^{T} z}{\|z\|}
$$

Denote $f(x)=-\|x\|, g(x \mid z)=-\frac{x^{T} z}{\|z\|}$

It's easy to check: $g(x \mid z) \geq f(x)$ and $g(z \mid z)=f(z)$

Recall the energy of the MDS

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j}\left(\left\|x_{i}-x_{j}\right\|-d_{i j}\right)^{2}
$$

It has terms $-2 d_{i j} w_{i j}\left\|x_{i}-x_{j}\right\|$

Tricks to construct majorizing function

Via arithmetic-geometric mean Inequality

The arithmetic-geometric inequality:

$$
\sqrt{a b} \leq \frac{a+b}{2} \Rightarrow a b \leq \frac{a^{2}+b^{2}}{2}
$$

Let $a=x_{1} \sqrt{\frac{z_{2}}{z_{1}}}, b=x_{2} \sqrt{\frac{z_{1}}{z_{2}}}$, we have

$$
f\left(x_{1}, x_{2}\right)=x_{1} x_{2} \leq \frac{1}{2}\left(x_{1}^{2} \frac{z_{2}}{z_{1}}+x_{2}^{2} \frac{z_{1}}{z_{2}}\right):=g\left(x_{1}, x_{2} \mid z_{1}, z_{2}\right)
$$

It's easy to check: $g(z \mid z)=f(z)$

Tricks to construct majorizing function

 Via the definition of convexityFor a set of points $\left\{t_{i}\right\}_{i=1}^{n}$ and the sum-to-one weight $\left\{a_{i}\right\}_{i=1}^{n}$, a convex function $f(\cdot)$ satisfies:

$$
f\left(\sum_{i=1}^{n} a_{i} t_{i}\right) \leq \sum_{i=1}^{n} a_{i} f\left(t_{i}\right)
$$

Let $t_{i}=\frac{\theta_{i}\left(x_{i}-z_{i}\right)}{a_{i}}+\Theta^{T} z, a_{i}=\frac{\theta_{i} z_{i}}{\Theta^{T} z^{\prime}}$, we have

$$
f(x)=f\left(\Theta^{T} x\right) \leq \sum_{i=1}^{n} \frac{\theta_{i} z_{i}}{\Theta^{T} z} f\left(\frac{x_{i} \Theta^{T} z}{z_{i}}\right):=g(x \mid z)
$$

It's easy to check: $g(z \mid z)=f(z)$

