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We present a novel method for realizing freeform surfaces with pieces of flat

fabric, where curvature is created by stitching together points on the fabric

using a technique known as smocking. Smocking is renowned for producing

intricate geometric textures with voluminous pleats. However, it has been

mostly used to realize flat shapes or manually designed, limited classes

of curved surfaces. Our method combines the computation of directional

fields with continuous optimization of a Tangram graph in the plane, which

together allow us to realize surfaces of arbitrary topology and curvature

with smocking patterns of diverse symmetries. Given a target surface and

the desired smocking pattern, our method outputs a corresponding 2D

smocking pattern that can be fabricated by sewing specified points together.

The resulting textile fabrication approximates the target shape and exhibits

visually pleasing pleats. We validate our method through physical fabrication

of various smocked examples.
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1 INTRODUCTION
In computational design and digital fabrication, realizing freeform

surfaces has emerged as a pivotal challenge for diverse applications,

such as freeform design and deployable structures for medical or

architectural purposes. In particular, the exploration of shape ap-

proximation through the versatile aesthetics of origami or kirigami

tessellations, where sheets of paper are folded along strictly pre-

scribed crease patterns, has attracted significant attention in com-

puter graphics [Choi et al. 2019; Dudte et al. 2016; Jiang et al. 2020;

Narumi et al. 2023]. Origami and kirigami are traditionally associ-

ated with flat sheets of paper and can potentially be extended to

other sheet materials, such as cardboard and silicone rubber [Jin

et al. 2020; Martinez et al. 2012]. The rigidity and inextensibility of

the used materials pose a unique challenge for the inverse design

problem with origami and kirigami: the fabrication constraints of

the materials must be taken into account along with the goal of
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input 3D shape tools for smocking

Fig. 1. Photo of fabricated 3D shapes realized by seamless smocking.

approximating a given shape. Typically, validity is measured by

how much the result is developable, which becomes the primary

constraint in the process.

Fabric is also commonly used for shape approximation in con-

texts such as designing plush toys [Mori and Igarashi 2007], form-

work [Zhang et al. 2019] or garments [Pietroni et al. 2022]. The

problem is typically approached by computing cuts to flatten the

input surface, with special consideration given to the locations and

shapes of seams for fabrication purposes. Textile materials are more

forgiving than the virtually inextensible paper and cardboard, af-

fording the realization of a broader class of surfaces through the

commonly accessible fabrication process of sewing.

In this work, we explore fabric tessellation to realize freeform

surfaces (see Fig. 1), combining the richness of origami tessellation

and the ease of manipulation of fabric materials. The flexibility

of cloth makes it much easier to create intricate patterns through

simple stitching, in comparison to paper, which demands precisely

computed crease lines and careful handling to avoid damaging the

Origami tessellation Fabric tessellation

front back front back

Fig. 2. Origami tessellation (left) and fabric tessellation (right). We show
the front and back view of the fabrication using theWaterBomb pattern.
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Fabric tessellation problem

expected output
smocked surface

(a) smocking pattern (b) the Tangram and its closing process (Sec. 4)

flattening to 2D
pull-back to 3D

(d) inverse design

(Sec. 5)
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Fig. 3. The inverse design problem for fabric tessellation. We solve for a 2D smocking pattern, such that, after fabrication, the smocked result closely
approximates the input 3D shape with regular pleats. Our solution has two important components: (1) a novel formulation of the so-called Tangram graph,
which connects the 2D smocking pattern with the 3D smocked result (Sec. 4); (2) an optimization scheme based on the Tangram to achieve the target geometry
and realize the input freeform surface (Sec. 5). Red (dashed) lines highlight the combinatorial equivalence across the different configurations of the Tangram.

material (see Fig. 2, left). We employ smocking [Durand 1979; Ren

et al. 2024], which is a traditional pleating technique, where various

points on the textile are stitched together in certain patterns and

secured with knots to create geometric texturing (see Fig. 2, right).

Conventional smocking results in a pleated, but overall inherently

flat surface shape. In our fabric tessellation approach, we generate

curvature by computationally modifying the smocking pattern, such

that the pushed-out pleats lead to local area deficits or excesses (see

Figures 3 and 4). This approach differs from origami tessellation,

where patches of paper are folded inwards and are mostly hidden,

such that the aesthetics of such patches does not matter. Smocking

also significantly departs from the standard garment or plush toy

fabrication practice, where separate patches are stitched along seams

to achieve the desired curvature.

Our goal is to address the inverse design problem of fabric tessel-

lation: given a freeform surface and the user’s preferred smocking

pleat type, we compute a 2D smocking pattern: a set of instructions

on which list of points should be stitched together (see Fig. 4). This

pattern, when fabricated, ensures that the overall shape of the final

result closely approximates the input shape and exhibits the desired

pleated texture. The unique challenge in fabric tessellation is how

to approximate the input shape while retaining regular and visually

pleasing pleats. Introducing singularities in the tessellation becomes

necessary when discretizing surfaces with high Gaussian curvature

and non-trivial topology, but traditional smocking does not define

singularities and seamless designs of curved and non-disk shapes.

In this work, we investigate the explicit control of pleat shapes to

attain a target surface metric. Additionally, we formulate seamless

smocking with singularities and show a computational method to

create such smocking patterns. Our main contributions are:

• We formulate the inverse design problem of realizing freeform

surfaces through fabric tessellation using smocking. Our formu-

lation accommodates various smocking patterns, and is designed

to achieve seamless pleating.

• We introduce a formalization for digital smocking, called a Tan-

gram, that connects the 2D smocking pattern and its correspond-

ing 3D smocked result, enabling solving for the inverse design.

• We present an optimization algorithm for the inverse design prob-

lem, yielding a 2D smocking pattern that faithfully approximates

the input surface after fabrication.

Our method is simple yet effective, as validated by physical fabri-

cation. We also offer a digital visualization tool for previewing the

smocked results in 3D. We showcase multiple applications for fabric

tessellation, demonstrating its applicability across various domains.

2 RELATED WORK

2.1 Surface approximation
Surface approximation has many applications ranging from digital

fabrication to the design of freeform architecture. Various materials

or forms have been explored to approximate an input 3D surface,

including paper [Demaine and Tachi 2017; Jiang et al. 2020], fab-

ric [Jourdan et al. 2020; Scherer 2019; Zhang et al. 2019], stripe

structures for beams [Liu et al. 2023; Panetta et al. 2019] or elastic

ribbons [Ren et al. 2021], shell structures [Brancart et al. 2015; Chen

et al. 2023; Ren et al. 2022], tensegrity structures [Pietroni et al.

2017; Shimoda et al. 2023] and auxetic materials [Chen et al. 2021;

Konaković et al. 2016, 2018]. In several works [Chen et al. 2021;

Panetta et al. 2019; Ren et al. 2022, 2021; Zhang et al. 2019], material

properties are taken into account, often through physical simulation,

to ensure the feasibility of the proposed solutions, while others are

mainly formulated as geometry problems to achieve the prescribed

target curvatures and shape [Choi et al. 2019; Dudte et al. 2016;
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smocking:
stitching endpoints together

Fig. 4. A hyperbolic surface smocked by different patterns. We show the
optimized smocking patterns and a digital preview of the smocked results.
The fabrication process comprises the stitching together of line segments,
followed by securing them with a knot.

Jiang et al. 2020; Konaković et al. 2018]. In this work, we explore

the use of fabric materials to approximate a target 3D surface by

simply stitching points on the fabric together. Since the resulting

shape after smocking is primarily governed by the configuration

of the stitches [Ren et al. 2024], we do not consider specific textile

material properties in our formulation.

To approximate a non-developable surface using planar sheets
such as paper and fabric, several common strategies exist: “subtract-

ing” local regions through folding [Demaine and Tachi 2017], cutting

thematerial open so that the expanded patternwhen pulled, together

with the opening holes, approximates the target surface [Choi et al.

2019; Konaković et al. 2018], or employing a hybrid strategy that

involves carefully cutting holes out of the paper and folding it to

close the holes, ultimately achieving the target surface shape [Jiang

et al. 2020]. In this paper, we employ a distinctive strategy that

fully utilizes the entire fabric without concealing or cutting out

“unneeded” patches. Groups of points are stitched together to create

local curvature, whereby small patches of fabric pop out and form

pleats. Consequently, the fabricated result after stitching effectively

approximates the input surface and possesses regular and aestheti-

cally pleasing pleats. This special fabric manipulation technique is

called smocking.

2.2 Smocking
Smocking is a surface embroidery technique that serves both deco-

rative and functional purposes, enhancing the stretch and volume of

the fabric while exhibiting geometric pleats [Durand 1979; Spufford

and Mee 2017; Toplis 2021]. Within the realm of smocking, Cana-

dian smocking stands out as a distinct genre characterized by the

creation of volumetric and geometric textures through localized

stitches, making it a subject of interest in various scientific fields,

including social science [Bauer and Elsey 1992; Elbyaly and Elfeky

2022; Joseph et al. 2011], computational design and fabrication [Efrat

et al. 2016; Lind 2019; Scherer 2019], simulation [Kim 2020], and

digital preview [Ren et al. 2024; Zhou et al. 2024]. In particular,

Ren et al. [2024] propose an efficient automatic method to preview

the smocked fabric based on a given smocking pattern. Our study

focuses on solving the inverse problem of smocking design.

Scherer [2019] proposed the first attempt to address the inverse

problem for a specific pattern, namely Resch’s pattern [Resch 1968;

Tachi 2013]. Scherer’s approach takes a regular triangle mesh with-

out singularities as input and lays out its triangle faces on a flat

hexagonal grid constructed from the 3D mesh dual. Subsequently,

the triangles are scaled and rotated to align the appropriate vertices,

and stitching lines are extracted to construct the smocking pattern.

This approach is tested on a hyperboloid surface, demonstrating its

effectiveness. However, it is unclear how to generalize this method to

other smocking patterns and how to handle singularities or irregular

input meshes. Additionally, the method lacks explicit control over

the produced pleats, resulting in highly distorted smocked pleats in

the realized surface (see [Scherer 2019, Fig. 10] and cf. Fig. 4) . In

this work, we aim to provide a general, principled solution capable

of handling various smocking patterns and mesh discretizations.

2.3 Origami tessellation and shadowfolds
Origami tessellation is a genre of paper folding that combines the

principles of origami with the concept of tessellation patterns. The

Japanese origami artist Shuzo Fujimoto was one of the key figures

who popularized tessellation as a distinct branch of origami. In the

1970s and 1980s, Fujimoto introduced new folding techniques that

enabled the creation of intricate geometric patterns [Fujimoto 1978;

Fujimoto and Nishiwaki 1982]. The art of origami tessellation was

further expanded by artists such as Paul Jackson [Jackson 1989], Eric

Gjerde [Gjerde 2008] and Chris K. Palmer [Rutzky and Palmer 2011].

The computational aspects of origami tessellation were formalized

by Bateman [2002], who built upon the methods developed by Paulo

Barreto [Barreto 1997] and Chris K. Palmer [Demaine and Demaine

2002; Rutzky and Palmer 2011]. They presented a computational

algorithm to solve for the crease pattern from tiling, providing a

formalized approach to analyzing and generating origami tessel-

lations. The feasibility of the computational origami tessellation

based on a dual-primal graph was later explored by Lang [2017].

Additionally, origami tessellation has been studied to create complex

folded structures in 3D [Dudte et al. 2016; Tachi 2009, 2013].

The shadowfolds technique is a fabric folding method inspired

by origami tessellation, often used in various forms of fabric art

such as quilting, textile design, and fashion [Rutzky and Palmer

2011]. Coined by Palmer in 1995, the term shadowfolds refers to
the use of pleated cloth, often translucent, which allows light to

pass through at varying levels. Rutzky and Palmer [2011], and Wu

[2022] note that woven cloth fibers possess greater flexibility than

paper fibers, making textiles an ideal medium for creating intricate

tessellations with relative ease. Instead of gently folding the fabric

along mountain and valley folds (as is done in paper folding), shad-

owfolds involve sewing multiple points in the fabric and flattening
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(a) (b)

(c)

(d)

Fig. 5. Paper folding vs. fabric stitching. (a) shows the crease pattern of a
hexagon Fujimoto twist for paper folding, with black (red) lines representing
the mountain (valley) folds, respectively. (b) and (c) show the front and
back views of the folded result. The visible region in the front view (b) is
highlighted with the same color scheme as in (a). Multiple points in the
folded result coincide, such as the set of orange (blue) points highlighted in
(d), which correspond to the orange (blue) point in (c). This allows for the
design of a smocking pattern (black stitching lines in (d)) that mimics the
origami result when smocked, see [Rutzky and Palmer 2011, page 17].

the resulting pleats and twists, either through sewing or ironing.

This characteristic aligns the shadowfolds technique with the art of

smocking. In Fig. 5 we show such an example, where the smocked

fabric result from pattern (d) looks similar to the folded result from

pattern (a). Recent research investigates spatially-varying density

for shadowfolds patterns [Wu 2022], and online creators explore ap-

plying shadowfolds techniques to fabricate 3D shapes using folded

fabric [En Why See 2009]. Our work can be used to realize a general

3D shape using the shadowfolds technique.

2.4 Surface tiling and remeshing
Unlike the Origamizer [Demaine and Tachi 2017], which aims to

find feasible crease patterns for any input polyhedron mesh, many

surface realization methods take regularly meshed surfaces as input.

These include quad meshes [Jiang et al. 2020], triangle meshes [Kon-

aković et al. 2018; Ren et al. 2022], or other special regular tes-

sellations [Chen et al. 2023]. Our proposed method also involves

parameterization-based meshing; we compute a new surface mesh

that corresponds to a planar tessellation (after cutting and flattening)

and use it to optimize for the smocking pattern. We briefly review re-

cent works on surface tiling and regular remeshing. Surface remesh-

ing can be obtained by computing a parameterization [Floater and

Hormann 2005; Hormann et al. 2007], or designing a directional

field [Jakob et al. 2015; Vaxman et al. 2016] for the input triangle

mesh. For example, Sawhney and Crane [2017] propose a mesh pa-

rameterization method that allows better control over the flattening

process by careful boundary handling. This method has been suc-

cessfully used for applications involving conformal remeshing [Kon-

aković et al. 2018; Ren et al. 2022]. Jiang et al. [2015] propose to

optimize the planarity of given polyhedral patterns with regulariz-

ers to tile a given surface. Peng et al. [2019] present a framework to

tile a mesh using a combination of quads and triangles, presenting

artistic decorative patterns. Meekes and Vaxman [2021] propose a

mesh tiling method using periodic or aperiodic patterns. Drawing

a connection to our work, in our case the smocked surface can be

seen as a special kind of tessellation, and we therefore make use of

regular remeshing methods in our inverse design approach.

3 FABRIC TESSELLATION

3.1 Problem formulation
Similar to the 2D crease pattern in the origami tessellation, the

chosen 2D smocking pattern plays an important role in the fabric

tessellation. We represent a smocking pattern as a list of 2D stitching

lines, where each stitching line is a set of 2D points connected by

line segments (see Fig. 3(a)). Smocking, the technique used to realize

the smocking pattern on a piece of fabric, involves sewing together

the points of each stitching line and securing themwith a knot. More

detailed descriptions of smocking can be found in [Durand 1979;

Ren et al. 2024]. The local stitches fold the fabric into pleats, which
should be as regular as possible to keep the result uniformly looking.

Coincidentally, smocking patterns are usually regular tilings of a

so-called unit smocking pattern, although non-tiled designs are also

possible, as shown in [Ren et al. 2024].

The forward problem for fabric tessellation is defined in [Ren et al.

2024]: given a 2D smocking pattern, the objective is to predict the

resulting 3D geometry of the fabric after sewing. Our goal is to

formulate and solve the inverse design problem for fabric tessellation.

Given a 3D freeform surface, we aim to compute the 2D smock-

ing pattern such that, when fabricated, the smocked result closely

approximates the input shape while exhibiting regular pleats.

Challenges. The inverse design problem for fabric tessellation is

nontrivial to formulate. Our objective is to compute the 2D positions

of an unknown number of stitching lines, which are disconnected,
to ensure that the smocked result after fabrication closely approxi-

mates the input shape. Formulating such objectives into an optimiza-

tion problem is challenging, as the variables (the positioning of the

stitching lines) and the goal (shape approximation error) are only

indirectly related to each other through an involved fabrication step.

Another challenge is to simultaneously achieve visually appealing

smocked pleats while accurately approximating the input shape (see

Fig. 15). The regions in the fabric that correspond to the pleats after

fabrication become disjoint after sewing, as demonstrated in [Lind

2019] and [Ren et al. 2024, Fig. 8]. As such, an intuitive solution is

to partition the fabric into different regions, then force part of the

regions to achieve an approximation of the input surface and regu-

larize the remaining regions to achieve well-shaped pleats. However,

how to exactly partition the flat fabric into regions with semanti-

cally meaningful correspondences to the final smocked result is a

nontrivial problem. Additionally, it is difficult to formulate error

measures for shape approximation and pleat regularity, since the

smocked result is unknown. Finally, a regular tessellation of a closed

surface, or an open surface with boundary alignment, must inher-

ently admit singularities, giving rise to the previously unattempted

problem of seamlessly incorporating smocking with singularities.

Potential solutions. A common strategy for inverse design prob-

lems involves adjusting the input based on a physically simulated

result [Chen et al. 2021; Panetta et al. 2019; Ren et al. 2022, 2021;

Zhang et al. 2019]. One potential approach for the inverse design of

fabric tessellation is to modify an initial, regularly tiled 2D smocking

pattern according to the shape difference between the simulated

smocking result and the input surface. However, as demonstrated

in [Kim 2020; Ren et al. 2024], general-purpose cloth simulators
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closing the Tangram (top view)

closed

closing the Tangram (side view)

Fig. 6. The Tangram-graph paradigm provides an intuitive representation of how pleats are formed during smocking (bottom row). As the stitching lines
(colored gray in the top row) become shorter, they drag the adjacent blue underlay faces and make them rotate, forcing the red pleat faces to shrink in 2D (top
row) and pop up to form 3D voluminous pleats (middle row).

struggle with the stitching constraints imposed by smocking. The

intricate folds formed during smocking necessitate significant colli-

sion handling, making it impractical for inverse design, where the

simulation process would be invoked in each iteration. Another

potential solution is to adapt the preview method designed for the

forward problem by Ren et al. [2024], i.e., utilize their computed

smocked result from a regular pattern to tackle the inverse design

problem. However, the method by Ren et al. [2024] involves discrete

graph operations, and part of the computed smocked result is in-

herently constrained to lie in 2D. Generalizing this pipeline to 3D

surfaces poses challenges. Appendix A provides detailed discussions

on why this approach is not suitable for the inverse design.

3.2 A Tangram approach to fabric tessellation
Our solution to the inverse design problem addresses the following

challenges: (1) how to mathematically describe the smocked result

and ensure its closeness to the target shape, (2) how to regularize the

pleat shapes, and (3) how to accommodate necessary singularities

for curved input surfaces.

A 2D smocking pattern can be decomposed into two parts: under-

lay faces, which resemble a Tangram pattern (e.g. shown in Fig. 6)

and connect to each other through a hinging vertex or edge, and

pleat faces as the complementary part.We formalize this observation

with a so-called Tangram graph. The Tangram graph provides an in-

tuitive interpretation of the fabrication of a smocking pattern: as the

length of the stitching lines approaches zero, the underlay faces join

together and form a combinatorial mesh-like structure, while the

pleat faces are forced to bend out of the 2D plane to create 3D pleats

(see Fig. 6). We refer to the Tangram as closed when the smocking

Fig. 7. Smocked torus interior.

constraints are satisfied, i.e., the

stitching lines have zero length, indi-

cating that the stitching points have

been sewn together. In Fig. 7, we

show the interior structure of the

smocked torus presented in Fig. 3.

The apparent structure aligns with

the closed Tangram, resembling a

triangle mesh. (Note that we left the

top part of the torus unsmocked and

open to be able to turn it inside out.)

This closing process of the Tangram establishes a connection be-

tween the 2D smocking pattern and the 3D structure of the smocked

result, offering two crucial benefits: (1) it enables the optimization

of the 2D smocking pattern with regularizers designed for the 3D

smocked result; (2) as mentioned earlier, once the Tangram is closed,

the underlay faces form a mesh-like structure, which can effec-

tively express curvatures or target shapes. Therefore, our goal is

to deform the shape of the Tangram graph in a way that its closed

configuration approximates the target shape.

To accurately approximate a given surface, we establish a map-

ping between the 2D domain and the 3D surface shape by remeshing

ACM Trans. Graph., Vol. 43, No. 4, Article 89. Publication date: July 2024.
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ℓ
𝑣
1

𝑣
2

𝑣
3

𝑒
ℓ𝑗

ℓ𝑖

Fig. 8. Left: the Arrow smocking pattern, where we highlight one stitching
line ℓ = {𝑣1, 𝑣2, 𝑣3} in green. Middle: we highlight all underlay edges,
connecting different stitching lines, in yellow. For example, the edge 𝑒

connects two different stitching lines ℓ𝑖 and ℓ𝑗 . These yellow underlay edges
partition the smocking pattern into disjoint regions.Right: we color the pleat
faces, the regions that contain stitching lines, in pink, and the remaining
regions, the underlay faces, in blue.

the surface with a semi-regular pattern derived from the closed con-

figuration of the Tangram, and tiling the planewith a combinatorially-

equivalent mesh where singularities have been cut out, as illus-

trated in Fig. 3. Some smocking patterns yield closed Tangrams with

3/4/6-symmetry, in which case employing a seamless parameteriza-

tion [Bommes et al. 2009; Meekes and Vaxman 2021] allows us to

smock a target shape with the necessary singularities. Finally, we

modify the shape of the Tangram in its open configuration (i.e., the

original 2D smocking pattern) such that it can realize the remeshed

surface upon stitching, effectively approximating the target surface.

See Fig. 3 for an overview of our method. Note that our Tangram

graph is fundamentally different from the smocked graph proposed

by Ren et al. [2024] (see Appendix A for more detailed discussion).

As the optimized Tangram mainly captures the coarse structure

of the smocked result, we also provide a preview tool to visualize

the precise geometry of the smocked pleats (e.g., Fig. 6, bottom).

This is achieved by deforming the higher-resolution fabric guided

by closed Tangram using arap [Sorkine and Alexa 2007], similar

to the approach presented in [Ren et al. 2024]. Appendix B further

discusses how the Tangram can be used to determine whether a

given smocking pattern is well-constrained, which provides insights

for pattern design.

Paper structure. In Sec. 4, we introduce notation and define the

Tangram graph. In Sec. 5, we propose a formulation and a solu-

tion method for the inverse design problem. In Sec. 6 we provide

a preview tool to visualize the smocked results after fabrication.

We showcase digital results and physical fabrications, and discuss

potential applications in Sec. 7, concluding our paper with Sec. 8.

4 SMOCKING PATTERNS AND TANGRAMS
We first introduce notations and provide a brief review of smocking

design. We then explore an approach to solve both the forward prob-

lem and the inverse design of fabric tessellation using a reduction

of the smocking pattern to a Tangram tiling.

4.1 Smocking patterns
A smocking pattern is delineated on a regular lattice drawn on fabric.

We follow [Ren et al. 2024] and represent a smocking pattern P =

(V, E,L) by a graph with vertex setV and edge set E that coarsely

represents a piece of fabric, and the stitching line annotations L. A
stitching line ℓ ∈ L is a subset of vertices inV that are to be stitched

together during fabrication, e.g., the line ℓ = {𝑣1, 𝑣2, 𝑣3} in Fig. 8

(left). The physical smocking process entails stitching all vertices

in every stitching line together, so their mutual distance becomes

zero. Following [Ren et al. 2024, Def. 4.1 and 4.2], we categorize the

vertices and edges in the smocking pattern:

Definition 4.1. A vertex 𝑣 ∈ V is called an underlay vertex if

it belongs to a stitching line, and a pleat vertex otherwise. An

edge 𝑒 ∈ E is called an underlay edge if it connects two different
stitching lines. The set of all underlay edges is denoted as E𝑢 .

The vertex set V can then be partitioned into two groups: the

underlay verticesV𝑢 = ℓ1 ∪ · · · ∪ ℓ𝑘 , ∀ℓ𝑖 ∈ L, and the pleat vertices
V𝑝 = V \V𝑢 , where 𝑘 = |L| is the number of stitching lines.

4.2 The Tangram graph
We construct the Tangram graph T = (V𝑢 , E𝑢 ) from a given smock-

ing pattern P = (V, E,L), where V𝑢 ⊂ V is the set of underlay

vertices and E𝑢 ⊂ E is the set of underlay edges. In Fig. 8 (middle)

we highlight the underlay edges E𝑢 in yellow. The underlay edges

partition the fabric plane into regions, or graph faces.

Definition 4.2. We call a region in the smocking pattern an un-
derlay face if it is bounded by underlay edges and does not contain
any stitching lines. Similarly, a region is called a pleat face if it is
bounded by underlay edges and contains some stitching lines.

Fig. 8 (right) highlights the underlay and pleat faces in blue and

pink, respectively. We observe that during the smocking process, as

the length of stitching lines approaches zero, the underlay faces are

drawn and brought closer together. We call it the closing process of
a Tangram graph.

Definition 4.3. The Tangram of a smocking pattern is closed
when the underlay faces and edges are rigidly rotated to reach a

configuration where all stitching lines have zero length. Similarly,

we say that the initial Tangram is in the open configuration.

Note that the open Tangram is embedded in 2D, as it identifies

with the original smocking pattern. The closed Tangram, however,

encodes the structure of the 3D smocked result, marking the com-

pletion of the sewing process, as the length of all stitching lines

is reduced to zero. Fig. 6 shows the intermediate steps of rotating

unit
pattern

closed

Fig. 9. Tangram of Braid pattern.

the underlay faces until the Tan-

gram of theArrow pattern is closed.

Fig. 9 shows another example of

a Tangram of the Braid pattern,

where in the closed configuration,

the pleat faces do not completely

vanish as in the Arrow example.

See Appendix B for more examples.

4.3 Computing the closed configuration of the Tangram
Deriving the closed Tangram directly from the smocking pattern is

often nontrivial. For some smocking patterns, we can construct the

closed Tangram using simple Euclidean geometry observations, by

rotating the underlay faces according to stitching lengths and the

law of cosines. In other cases, the closed Tangram can be effectively

computed by an optimization process based on Def. 4.3. For a node
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crease pattern smocking pattern

3-RoSy

3-RoSy

4-RoSy

6-RoSy

Resch-3a

Resch-3b

Resch-4

Resch-6

Fig. 10. Resch’s patterns. Left : we show Resch’s origami crease pat-
terns [Resch 1968], where black (red) indicates the mountain (valley) folds
(cf. Fig. 5 in [Tachi 2013]). Middle: the corresponding derived smocking
patterns, where we highlight some of the underlay regions in blue and show
their closed configuration on the right.

𝑣 in the Tangram with an initial position x ∈ R2
in the open config-

uration, we denote its new position when the Tangram is closed as

x̃ ∈ R2
. Stacking all the node positions of the closed Tangram into

a vector of unknowns X̃, we formulate the optimization for closing

the Tangram as follows:

min

X̃∈R|V𝑢 |×2
𝛼𝑠 𝐸stitch

(
X̃
)
+ 𝛼𝑟 𝐸rigid

(
X̃
)
, (1a)

where 𝐸
rigid

(
X̃
)
=

∑︁
(𝑖, 𝑗 ) ∈E𝑟

( ̃x𝑖 − x̃𝑗 
2
− 𝑙𝑖, 𝑗

)
2

, (1b)

𝐸
stitch

(
X̃
)
=

∑︁
ℓ∈L

∑︁
(𝑖, 𝑗 ) ∈ℓ

( ̃x𝑖 − x̃𝑗 
2
− 𝜂 𝑙𝑖, 𝑗

)
2

. (1c)

Here, 𝑙𝑖, 𝑗 =
x𝑖 − x𝑗 

2
is the original distance between underlay

vertices in the open configuration. The set E𝑟 in Eq. (1b) is the set

of edges we collect that should transform rigidly during the closing

process, namely, the underlay faces and edges according to Def. 4.3.

To accommodate for non-triangular underlay faces, we triangulate

them by adding diagonals to E𝑟 (see Fig. 8 (left)), such that rigidity

is well-defined.

Eq. (1c) encourages all pairs of underlay vertices within the same

stitching line to have a reduced length when closing the Tangram.

We introduce the parameter 𝜂 ∈ [0, 1] to indicate the progress

of the stitching process: when 𝜂 = 1, the open Tangram is the

global optimum and no optimization is needed, while setting 𝜂 = 0

results in the closed configuration of the Tangram, as the expected

length for stitching edges approaches zero; 0 < 𝜂 < 1 gives the

intermediate results, as shown in Fig. 6.

5 SMOCKING 3D SURFACES
The closed Tangram of a regular smocking pattern is in essence

a polygonal plane tiling, as illustrated in Fig. 6, 9, 10 and 16(c). A

common approach to realize a 3D shape from plane tilings is through

parameterization [Konaković et al. 2018; Meekes and Vaxman 2021].

We next show how we pull back the tiled grid to approximate the

target shape, which allows us to optimize for the Tangram in its

open configuration to fit the surface upon its closing.

5.1 Input & output
As input, we assume that we are provided a freeform surfaceM,

represented as a triangle mesh, and a unit smocking pattern. We

obtain an initial smocking pattern P = (V, E,L) by evenly tiling

the input unit smocking pattern on a regular grid in the 2D plane.

Here we specifically focus on the Tangram graph T = (V𝑢 , E𝑢 )
instead of the entire grid, as the Tangram itself is sufficient for

deriving and optimizing the smocking pattern. The vertices inV𝑢
have different embeddings in the open and closed Tangram. We use

superscript to distinguish the closed Tangram T 𝑐 = (X𝑐 , E𝑢 ) from
the open Tangram T𝑜 = (X𝑜 , E𝑢 ) with their embedded positions:

X𝑜 ∈ R |V𝑢 |×2
are the vertex positions on the planar grid, and

X𝑐 ∈ R |V𝑢 |×2
are the positions obtained by solving Eq. (1a), i.e.,

when the Tangram is closed after stitching.

X𝑜 X𝑐

Y𝑜 Y𝑐

Sec. 5.3optimize

Sec. 5.2

pull-backflatten

closing

closing

Fig. 11. Notation for optimization.

See Fig. 11 (top) for an

illustration of the embed-

dings X𝑜
and X𝑐

. Note that

X𝑜
and X𝑐

are in one-to-

one correspondence, and

represent different embed-

dings for the underlay ver-

tices V𝑢 of the Tangram

with known positions. The

expected output is the

2D smocking pattern, ex-

tracted from the open Tangram T𝑜 = (Y𝑜 , E𝑢 ) with a new em-

bedding Y𝑜 ∈ R |V𝑢 |×2
, such that in its closed configuration

T 𝑐 = (Y𝑐 , E𝑢 ), its geometry Y𝑐 ∈ R |V𝑢 |×3
approximates the target

surface. Fig. 11 (bottom) illustrates the notation. Here, Y𝑐 and Y𝑜

are the unknowns to be solved for.

The algorithm. The key steps to solving the inverse design are:

(1) generating a semi-regular mesh Y𝑐 by seamless parameteriza-

tion, (2) cutting Y𝑐 to a combinatorially-regular pattern with seams

and embedding it in the plane with geometrically-regular faces as

X𝑐
, (3) opening X𝑐

to obtain X𝑜
, and (4) optimizing Y𝑜 with X𝑜

as the initial solution, so that it reproduces the metric of Y𝑐 with
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Fig. 12. Fabricated singularities using smocking with indices 1

3
, − 1

3
, 1
4
, − 1

4
, 1
6
, − 1

6
from left to right respectively. For each case, we show an illustration of the

singularity in the closed Tangram. We highlight the singularity vertex (𝑁 = 3, 4) or singularity face (𝑁 = 6) in red.

stitching
together

open Tangram closed tangram with singularity

Fig. 13. Seamless smocking with a singularity of index 1

4
using WaterBomb

(Resch-4) pattern. Here we show the closing process of Tangram. When the
open Tangram (leftmost) is closed and the corresponding seams are sewn
together, the closed Tangram (rightmost) has one singularity.

as-regular-as-possible pleats. Broadly, our algorithm has two com-

ponents: computing the combinatorics of the closed pattern, which

is controlled by the combinatorics of a surface semi-regular mesh

with a few singularities, and optimizing for the open pattern such

that its closed configuration reproduces the surface.

5.2 Seamless smocking patterns
5.2.1 Symmetry in a closed Tangram. Some closed Tangrams exhibit

translational (𝑁 = 2) or rotational (𝑁 = 3/4/6) symmetries. For

example, the closed Tangrams of Arrow (Fig. 6), Braid (Fig. 9),

and further patterns in Appendix B show translational symmetry

whose structure can be described by 2-fields. Their closed Tangram

exhibits an unconventional tiling of the plane, where the unit tile

is composed of a mixture of polygons. Smocking patterns can be

derived from the famous Resch origami patterns [Resch 1968], whose

closed Tangrams exhibit 3-, 4-, or 6-rotational symmetry (see Fig. 10).

5.2.2 Rotationally-symmetric smocking with singularities. With ro-

tational symmetries, we have more flexibility in designing smocking

patterns for surfaces with arbitrary topologies that require singu-

larities. We introduce seamless smocking, where the pleats exhibit
identical patterns up to a rotation everywhere except at singularities.

See Fig. 12 for some examples of the fabricated singularities with

seamless pleats. Seamless smocking can only be achieved for pat-

terns with rotational symmetry. Thus, we focus on Resch’s smocking

patterns, particularly when singularities are needed due to topology,

or desired for better shape approximation. The closed Tangrams of

Resch’s patterns form a regular triangular, quadrilateral, or hexag-

onal grid, as shown in Fig. 10, allowing for the straightforward

smocked result
(digital)

closed

open

front back

Fig. 14. A seamless smocking pattern that incorporates a singularity to
address negative Gauss curvature has overlapping regions in the plane,
visualized using additive opacity. The corresponding digitally smocked sin-
gularity is in front and back view. In physical fabrication, the overlapping
regions are split and annotated on two pieces of fabric and sewn together.

encoding of conventional singularities. We can derive an open Tan-

gram with seams such that, when it is closed and the corresponding

seams are sewn together, the resulting closed Tangram encodes

the designed singularities. Fig. 13 and 14 show an example of a

seamless smocking pattern that leads to a singularity with posi-

tive and negative curvature, respectively. Our method enables this

computationally by working with seamless parameterizations.

5.2.3 Computing Y𝑐 by semi-regular meshing. The first main chal-

lenge is to construct a surface mesh Y𝑐 that we consider to be a

good geometric target that is combinatorially equivalent to the

closed planar Tangram. For patterns that exhibit translational sym-

metry (𝑁 = 2), we compute the mesh Y𝑐 by pulling back a grid

tiled with the closed Tangram onto the input shape. For patterns

with 𝑁 -symmetry, we compute Y𝑐 that respects this symmetry (e.g.,

triangles for 3-RoSy, quads for 4-RoSy, and hexagons for 6-RoSy)

and allows for singularities. Specifically, the mesh Y𝑐 is generated
by computing a seamless parameterization, following the method

by [Meekes and Vaxman 2021]; broadly, we optimize a curl-free 𝑁 -

vector field that is as close as possible to a unit norm singularity-free

2-field or 𝑁 -RoSy field with singularities (if necessary), integrate it

into 𝑁 -functions, and generate a mesh by pulling back a regular grid

in the plane. We give details for the algorithm and our modifications

of it in Appendix C for completeness.

5.2.4 Solving X𝑐 . Next, we generate X𝑐
by cutting Y𝑐 open, with

all singularities on the boundary of X𝑐
, and storing the rotational

constraints on the newly-created vertices and edges of the cut seams,

for our consequent optimization. We immerse it in the plane by

setting all faces as regular (for the given prescribed regularity of

the chosen smocking pattern). Note that for a singularity-free mesh
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(a) initial Tangram (b) opt. without Epleat (c) opt. with Epleat

(d) without

regularizer

(e) with

regularizer

Fig. 15. Explicit control over pleat shapes is essential in solving the inverse
design problem. Modifying the 2D smocking pattern to approximate a 3D
shape can potentially damage the pleat shape if no regularizer is added, as
shown in (d). For comparison, our formulation allows to effectively preserve
the pleat shapes, shown in (e).

Y𝑐 , the mesh X𝑐
is nothing but the part of the tiled grid in the plane

that was pulled back to generate Y𝑐 to begin with. It is important to

note that X𝑐
is not, in general, an embedding, since faces may be

overlapping globally (see example in Fig. 14), but this is immaterial

to our algorithm.

We can restore the structure of the closed Tangram X𝑐
from the

tiled grid by splitting the faces and reestablish their connectivity

based on the pattern. The open configuration of the Tangram X𝑜

can then be obtained by rotating the Tangram faces and edges until

they achieve the structure of the original Tangram of the pattern. In

the presence of singularities, cutting the seamless closed Tangram

open is straightforward, as shown in Fig. 13 (right). However, com-

puting the seamless X𝑜
is then not as trivial. This process involves

adding additional pleat faces to the matching seams, as shown in

Fig. 13 (left). Specifically, when the matching seams are sewn to-

gether, the combined shapes of the newly added pleat faces (except

for those at the singularity) match together to pleat faces in the

original pattern. For example, in Fig. 13 (left), the pleat faces along

the seam are seamlessly combined to form a perfect square when

the matching seams are sewn together. The pleat face around the

singularity has a missing piece: the angle between the cut seams

matches the cone angle of the singularity, e.g.
3

2
𝜋 in the example

mentioned above.

5.3 Tangram optimization
Since Y𝑐 already approximates the geometry of the target surface,

the remaining problem is how to modify the embedding of the open

Tangram, X𝑜
, such that its closed configuration exactly matches

Y𝑐 , while maintaining the regularity of the pleats. For simplicity of

notation, we use the bold font e to represent an edge vector and

normal font 𝑒 to represent its edge length, e.g., e𝑖 𝑗 = y𝑖 − y𝑗 and
𝑒𝑖 𝑗 =

 y𝑖 − y𝑗 
2
. Notation ∡ (e1, e2) represents the angle between

the two vectors e1 and e2, measured in the range [0, 2𝜋).

5.3.1 Shape energy. Recall that the underlay edges and faces trans-

form rigidly during the Tangram closing process (see Def. 4.3). There-

fore, to achieve the closed embedding Y𝑐 , we need to optimize the

edge lengths of the open Tangram configuration Y𝑜 to match those

in Y𝑐 . We formulate the following shape energy:

E
shape
(Y) =

∑︁
(𝑖, 𝑗 ) ∈E𝑢

©«
𝑒𝑖 𝑗 y𝑐𝑖 − y𝑐𝑗 

2

− 1
ª®®¬
2

. (2)

5.3.2 Pleat Energy. To regularize the shape of the pleats and ensure
that the smocked result is visually pleasing, we use the following

energy to preserve the angles between two adjacent boundary edges

of the pleat face:

E
pleat
(Y) =

∑︁
𝑓 ∈F𝑝

∑︁
(𝑖, 𝑗 ),( 𝑗,𝑘 ) ∈ 𝑓

1

2𝜋

(
∡

(
e𝑖 𝑗 , e𝑘 𝑗

)
− 𝜃𝑖 𝑗𝑘

)
2

, (3)

where F𝑝 is the set of pleat faces and the summation goes over all

pairs of adjacent edges in a pleat face; 𝜃𝑖 𝑗𝑘 is the angle between the

two edges from the original pattern. Fig. 15 shows the optimized

Tangram (top) with and without this termE
pleat

, and its correspond-

ing smocked result (bottom). We can see that E
pleat

can effectively

regularize the shape of pleats and lead to improved results.

5.3.3 Seam energy. In case there are seams induced from the smock-

ing pattern with singularities, we design the following term to en-

sure the corresponding cuts can be properly stitched together during

fabrication:

Eseam (Y) =
∑︁
(𝑖, 𝑗 ) ∈C

(
𝑒𝑖 𝑗

𝑒′
𝑖 𝑗

−
𝑒′
𝑖 𝑗

𝑒𝑖 𝑗

)
2

(4a)

+
∑︁

(𝑖, 𝑗 ),( 𝑗,𝑘 ) ∈C

1

2𝜋

(
∡

(
e𝑖 𝑗 , e𝑘 𝑗

)
− ∡

(
e′𝑖 𝑗 , e

′
𝑘 𝑗

))
2

(4b)

+
∑︁

(𝑖, 𝑗 ) ∈𝐶,( 𝑗,𝑘 ) ∈C′

1

2𝜋

(
∡

(
e𝑖 𝑗 , e′𝑘 𝑗

)
− 𝜃 𝑗

)
2

, (4c)

where 𝑒′ ∈ C′ is the duplicated edge corresponding to the edge

𝑒 ∈ C along the cut. The first term, Eq. (4a), promotes the cor-

responding edges along the seam to have the same length. This

standard equal-length energy for cuts prevents the formation of

ruffles during stitching. The second term, Eq. (4b), maintains the

angle between two consecutive edges along the cuts. This combined

energy encourages any cut C to preserve its seamless compatibility

to its duplicated counterpart C′. This property facilitates an easier

stitching process during fabrication. The third term, Eq. (4c), en-

courages the angle between each pair of twin seams (at the shared

vertex y𝑗 ∈ C∩C′) to match the cone angle 𝜃 𝑗 of the corresponding

singularity. It is important to note that the cuts always split pleat

faces, while the underlay faces remain intact (see Fig. 14). As such,

we incorporate (pleat) seamlessness as a soft regularizer instead

of imposing hard constraints, recognizing that imperfect seams do

not compromise the search space of optimizing underlay faces to

reproduce the target shape. However, it might affect the regularity

of the pleat shapes along the seams.
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(a) smocking pattern (b) Tangram (c) closed

Tangram

(d) initialized by fully opened Tangram

init. res.

(e) initialized by half -closed Tangram

init. res.

Fig. 16. (a) The WaterBomb smocking pattern with stitching lines colored in black. (b) The derived Tangram graph, where the underlay (resp. pleat) faces are
colored in blue (resp. red). (c) The Tangram in the fully closed configuration, which is used for mapping to the target shape. We then optimize the Tangram to
reproduce the expected geodesics starting from two different initial configurations, the fully open Tangram in (d) and a half-closed Tangram in (e). Notably, in
(e), the initial pleat regions (colored red) have smaller areas compared to those in (d), resulting in smaller-sized pleats in the final smocked result.

Fig. 17. Top: smocked hemisphere using Leaf, Heart, and Box pattern.
Bottom: the corresponding stitching pattern.

5.3.4 Full optimization. Starting from the initial opened configura-

tion X𝑜
, we optimize the 2D embedding of the Tangram Y using the

following energy:

Y𝑜 = argmin

Y∈R|V𝑢 |×2
𝑤𝑠Eshape

(Y) +𝑤𝑝Epleat
(Y) +𝑤𝑐Eseam (Y) . (5)

The scales of all terms are comparable. We use the same set of

parameters for all experiments. During optimization, we give a

higher weight (𝑤𝑠 = 1) toE
shape

due to its essential role in realizing

the target shape, while Eseam is assigned with a lower weight𝑤𝑐 =

0.1 as imperfect seams can be tolerated. We initialize 𝑤𝑝 = 100

for E
pleat

to promote the preservation of the pleat shapes at the

beginning of the optimization. During each iteration we minimize

the total energy until convergence. At the end of the iteration, we

decrease the weight of𝑤𝑝 by 20% to relax the pleat energy and allow

further error reduction in E
shape

for better shape approximation.

The optimization process is stopped when E
shape

, the relative

edge reproduction error summed over all edges, falls below a pre-

defined threshold (10
−4
), or when a specified maximum number of

iterations (100) is reached. Our algorithm is efficient and only takes

seconds to solve for the smocking pattern. See Sec. 7 for further

discussion. Note that we can also start the optimization from a half-

closed Tangram configuration and obtain results with different size

of pleats, as shown in Fig. 16.

As the stitching linesL are defined as lists of underlay vertices, we

can extract the modified stitching lines from the optimized embed-

ding Y𝑜 , which can be then transported onto fabric for fabrication.

input

Fig. 18. A smocked “Pringle” shape using Resch-4 and Resch-3A pattern;
each has one singularity.

6 A PREVIEW TOOL FOR SMOCKED RESULTS
Ren et al. [2024] introduced a preview tool for predicting the ge-

ometry of the smocked fabric from a regularly tiled pattern, ex-

plicitly constraining the underlay vertices to be embedded in 2D.

This approach does not apply to our situation, as the underlay

vertices (i.e., the closed Tangram) from the optimized pattern are

embedded in 3D upon stitching. We create a preview of what our

smocking result would approximately look like by emulating the

y𝑜

y𝑜
1

y𝑜
2

y𝑜
3

y𝑜
4

y𝑜
6

y𝑜
5

y𝑐

y𝑐
5

y𝑐
2,4,6

y𝑐
1

y𝑐
3

y𝑐 ∈ R3

Fig. 20. mvc for the pleat nodes.

closing process. We upsample

and triangulate the smocking

pattern to a much finer res-

olution and apply a seamless

version of as-rigid-as-possible

arapmesh deformation [Sorkine

andAlexa 2007], tomimic its de-

formation from Y𝑜 to Y𝑐 , while
constraining the vertices to their prescribed positions. Given that

the pleats are equally likely to pop out of the fabric plane in both

directions (to the front side and to the back side of the fabric), we

introduce additional positional constraints for the pleat faces to

resolve this ambiguity: we sample one point in each pleat face in

the open Tangram and estimate its position when the Tangram is

closed, based on Mean Value Coordinates (mvc) [Floater 2003]. For

example, as shown in Fig. 20, we sample a pleat vertex y inside the

red pleat face, which is bounded by six underlay vertices with corre-

sponding mvc𝑤𝑖 satisfying y𝑜 =
∑
6

𝑖=1𝑤𝑖y𝑜𝑖 . When the Tangram is

closed and these underlay vertices are embedded in new positions

y𝑐
𝑖
, we can compute a reasonable estimate for its projected position
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(a) input shape (b) shape tiled by closed Tangram (c) optimized stitching pattern (d) smocked result (preview) (e) physical fabrication

6 singularities

8 singularities

12 singularities

Fig. 19. Seamless 3D smocking. For a given shape (shown in column (a)), we run our algorithm discussed in Sec. 5 to obtain a seamless remeshing (b), with
singularities highlighted in red. Column (c) shows the optimized stitching pattern, including both the stitching lines and the seams. Column (d) shows the
smocked results using our preview tool and (e) shows the corresponding physical fabrications. Note that we leave some parts of the fabric unsmocked and
open (including the top of the cloud shape, the tip of the heart shape, and the poles of the sphere shape) to allow us to flip the smocked results inside out.

on the 3D surface: y𝑐 =
∑
6

𝑖=1𝑤𝑖y𝑐𝑖 . We then further shift y𝑐 along
the normal direction with height ℎ; the same procedure is applied to

all pleat faces. Specifically, ℎ is set to the average target edge length

to ensure a reasonable height. The exact value is not critical, as the

additional pleat constraints are only used in the first iteration of

ARAP to eliminate directional ambiguity and are later discarded.

We implement a seamless version of arap to create a faithful

preview along the seams when singularities are involved. In addition

to the computed stitching lines, the smocking pattern also contains

the corresponding seams C and C′ as lists of edges that need to be

stitched together. The seamless version considers the complete 1-

ring neighborhoods around seams, leading to improved smoothness

across seams in the previewed results. Specifically, since the seams

are optimized to be rotationally symmetric (see Eq. (4)), we can

find a rotation between corresponding edges on the seams, i.e.,

e′ = Re where 𝑒 ∈ C, 𝑒′ ∈ C′. These rotations allow us to transport

the 1-ring neighborhood of a boundary vertex on seam C to the

1-ring neighborhood of its corresponding duplicated vertex on C′,
and we merge them to get the full neighborhood information for

boundary vertices. The new neighborhood is used both in computing

the rotation in the local step and in the global Poisson stitching

step, as in standard arap. This approach successfully eliminates the

artifacts that may arise from simply stitching the vertices via hard

constraints.

7 RESULTS AND DISCUSSION
We implemented our algorithm in C++ using the libraries Direc-

tional [Vaxman et al. 2019], libigl [Jacobson et al. 2018], and Polyscope

[Sharp et al. 2019]. All the experiments are carried out on aMacBook

with an Apple M1 Max chip and 32GB of memory. We set 𝜂 = 0 in

Eq. (1c) and solve for the closed Tangram directly. Equations (1a)

and (5) are solved using Newton’s method with per element pro-

jected Hessian (calculated via autodiff). To fabricate the output

smocking patterns, we use a laser cutter to engrave the stitching

lines extracted from the optimized Tangram onto the fabric. Seam

allowance is added to cuts if present. We first sew the corresponding

cuts together and then smock the fabric by following the annotated

stitching pattern. When fabricating a closed shape, we leave a small

region unsmocked (e.g., shown in Fig. 3 and 19) to facilitate turning

the smocked fabric inside out, as the stitching is done on the backside

of the fabric. Please see the full implementation and the ready-to-

smock stitching patterns for the 3D shapes we experimented with

here: https://github.com/segaviv/SmockingTessellations, and see the

accompanying video for various physical and digital fabrications.
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(a) sewing pattern (b) draped dress (c) smocking pattern (d) smocked dress (e) zoom-in

Fig. 21. In (a) we show the sewing patterns for two dresses from [Korosteleva and Sorkine-Hornung 2023] and the corresponding draped dresses in (b). Our
algorithm outputs the smocking patterns, shown in (c), to realize the draped garments. The corresponding smocked results are shown in (d) with a zoomed-in
view in (e).

7.1 Smocked 3D surfaces
We demonstrate that our Tangram formulation is general and can

be applied to numerous smocking patterns. Our method is effec-

tive for a variety of shapes with both negative and positive Gauss

curvatures. For example, in Fig. 4, 17 and 18, we show different

smocked results that approximate a hyperboloid, a hemisphere, and

a hyperbolic paraboloid (“Pringle”) shape. Note that we do not in-

corporate boundary alignment into the patterns shown in Fig. 4

and 17. Adding boundary alignment constraints introduces integral
singularities (of full field rotations), where seamless smocking is un-

defined. Instead, we opt to crop the closed Tangram falling outside

the covered domain, acknowledging that this approach may result

in imperfect boundary alignment. For closed shapes and shapes

with more prominent curvature, as shown e.g. in Fig. 19, we apply

the seamless variant of our method for smocking patterns whose

Tangrams have 𝑁 -rotational symmetry (𝑁 = 3, 4, 6).

As demonstrated by the physical fabrications, our method can

accurately realize the target shapes, and our preview tool is suffi-

ciently faithful for digital design, despite some self-intersections

around the seams. Specifically, for all experiments, the edge repro-

duction error between the closed Tangram and the target surface

summed over all edges, i.e., calculated via Eq. (2), is below 10
−4
.

The smocked “Pringle” in Fig. 1 maintains a tight fit after draping

onto the 3D printed input shape shown in Fig. 18. The smocked

results of the closed surfaces shown in Fig. 19 cannot be draped

onto the 3D-printed shape due to the necessity of sewing seams

first, and then smocking across the seams before draping. We stuff

the smocked shape with cotton, resulting in a slight deviation from

the input shape due to imperfect stuffing.

Ourmethod for inverse design and result preview is fairly efficient.

Table 1 reports the runtime for optimizing the smocking patterns

and generating previews of the smocked results: it takes around

5 ∼ 17 seconds to compute the optimized pattern with 300 ∼ 400

stitching lines and about 5 ∼ 16 seconds to generate a preview for

an upsampled mesh of 70 ∼ 120K vertices.

7.2 Potential applications
We believe fabric tessellation has a wide range of potential applica-

tions including garment, architecture, acoustics, and auxetic meta-

material design.

Table 1. We report the shape complexity (including the number of faces
| FM | and vertices | VM | of the remeshed input shape, the number of
stitching lines | L | that need to be optimized, and the number of vertices 𝑛
in upsampled mesh for preview) of the examples shown in Fig. 19. We also
report the runtime for optimizing the stitching patterns 𝑡opt and previewing
the smocked results 𝑡preview.

example

complexity runtime (sec.)

| FM | | VM | | L | 𝑛 𝑡opt 𝑡preview

Fig. 19 (top) cloud 1332 668 351 78,809 16.7 5.0

Fig. 19 (mid.) heart 1126 565 393 120,698 12.5 16.2

Fig. 19 (btm.) sphere 630 320 310 82,953 5.5 10.1
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initial Tangram

optimized Tangram

extracted smocking pattern

input (stadium) remeshed (seamless)

smocked shape

top view

init.

opti.

input (shell)

(no singularity)

top view

init.

opti.

input (botanic garden)

(2 singularities)

top view

Fig. 22. Smocking for free-form architectural design. For each model, we show the Tangram before and after optimization, where the underlay faces and pleat
faces are colored in blue and pink respectively. We also show the smocking pattern extracted from the optimized Tangram, with the digital preview results in
different views.

Garment design. Intricate pleating and smocking is utilized in cou-

ture and creative artisanal fashion design to create texture and extra

volume. Normally, especially when making garments out of woven

fabric, darts are unavoidable in order to generate the necessary cur-

vature out of a flat sewing pattern and create a close fit, as seen in

the carefully designed sewing patterns in Fig. 21 (a). The smocking

technique offers an alternative solution for creating local curvature

through stitching without cutting. In Fig. 21 we showcase how our

method is used to generate an optimized smocking pattern to ap-

proximate the 3D shapes of two different dresses. Our algorithm can

be used to convert a conventional sewing pattern into a smocked

design, helping designers save time and circumvent painstaking

draping and pinning of smocked pleats onto mannequins.

Architectural design. In Fig. 22 we show three examples of using the

smocking technique to realize 3D architectural surfaces. Our seam-

less smocking can approximate doubly-curved surfaces by fabric

tessellation with singularities while exhibiting regular and seamless

pleats. The voluminous structure created by the smocked pleats

holds the potential to enhance insulation for buildings. Additionally,

as explored by Scherer [2019], smocked fabric can be employed as

supporting material for pouring and shaping concrete structures.
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Fig. 23. Conceptual illustration of applying fabric tessellation in acoustic
design for a musical hall.

Acoustics design. Harne and Lynd [2016] combined origami tessella-

tion with the physics of acoustics, and demonstrated its potential in

designing tessellated acoustic arrays. This inspires a promising appli-

cation for fabric tessellation given the suitability of fabric as a good

material for sound diffusion [Aksa acoustic Co. 2024; Kamisiński

et al. 2012; Stern EWS Co. 2024]. In Fig. 23, we present a conceptual

scenario where fabric tessellation contributes to acoustic design

in a musical hall [Andersons 2023; Wormald 2022]. Our method

enables the accurate realization of a curved surface adorned with

visually pleasing tessellated pleats. We leave the exploration of the

meta-material properties of tessellated fabric for future work.

closed

Fig. 24. Variant of Resch-3a pattern

Programmable auxetics. We no-

tice the similarity between the

Resch-3a pattern shown in Fig. 10

and the auxetic material pattern

explored in [Konaković et al.

2018, Fig. 6] (cf. Fig. 24). The two

patterns have exactly the same

topology of the Tangram, but in

different opening (closing) angles, resulting in differently shaped

patterns. An intriguing connection exists between the work of [Kon-

aković et al. 2018] and our smocking problem. In [Konaković et al.

2018], the focus is on finding the 2D configuration of the nearly-

closed Tangram (or a Kagome lattice, using their terminology) to

approximate a given 3D surface when fully open (i.e., after prying

them apart). Conversely, our goal is to determine the 2D configu-

ration of the Tangram in the opened state, so that it approximates

a given 3D surface when fully closed (i.e., after stitching). Another

perspective is that while Konaković et al. [2018] generates discrete

Gauss curvatures via empty spaces (via expansion), our smocking

process does this by pushing excess fabric outwards to form pleats.

Inspired by [Konaković et al. 2018], we experiment with our

Tangram formulation for designing programmable auxetics. We

follow our algorithm discussed in Sec. 5 and Fig. 11 with a small

modification: we lift the Tangram in its open configuration onto

the target 3D shape through parameterization and then optimize

the Tangram in the closed configuration in 2D using the shape

approximation energyE
shape

with a simple barrier function to avoid

fully expand

Fig. 25. Tangram for programmable auxetics. On the left we show the
optimized nearly-closed Tangram. Upon full expansion, it approximates the
shape of Lilium (top) and Bone (bottom) models using the Resch-3A and
Arrow patterns, respectively.

Fig. 26. Left : Shadow-folded bell shape usingOrigamizer [Tachi 2008]. Image
from flicker.com by EnWhy See under CC BY-NC-ND 2.0. Right : the exterior
and interior of the fabricated smocked bell shape using our method.

collisions between the underlay faces. The promising results shown

in Fig. 25 underscore the potential of the Tangram formulation

for auxetic material design. While further modifications may be

required for more intricate surfaces, these preliminary findings hint

at the exciting possibilities in the realm of auxetic materials.

Shadowfolds for 3D surfaces. Shadowfolds, a creative technique that
combines origami tessellation with translucent cloth material, uti-

lizes patterns derived from Euclidean planar tilings through the

shrink-rotate algorithm [Bateman 2002; Lang 2017; Rutzky and

Palmer 2011], as detailed in Appendix D. Extending the shadowfolds

technique to 3D is challenging, given that planarity is a fundamental

assumption in pattern design. An online user [En Why See 2009]

experimented with using the Origamizer [Demaine and Tachi 2017;

Tachi 2008] to create a 3D bell shape, as shown in Fig. 26 (left).

However, since the Origamizer is tailored to origami tessellation

and emphasizes feasibility for fabrication rather than regularizing

pleat shapes (which are concealed in origami tessellation), using it

for shadowfolds offers no guarantee of achieving the desired regular

pleats. Our method provides a more suitable design tool for 3D

shaldowfolds. See Fig. 26 (left) for our fabricated bell shape.
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8 CONCLUSION, LIMITATIONS AND FUTURE WORK
We have presented a formulation for the fabric tessellation problem,

aimed at reproducing target metric to realize a freeform surface. For

surfaces where singularities cannot be avoided, such as those with

high Gaussian curvature or watertight surfaces, we only consider

Resch patterns, where seamless smocking is relatively easy to derive.

For patterns with translational symmetry only, it is not obvious how

to integrate singularities into the unconventional tessellation of

their closed Tangram, which we leave as future work.

We do not provide theoretical guarantees for the types of 3D

closed Tangrams that can be realized by closing a 2D open Tangram.

For instance, one can distort the 3D closed Tangram by adjusting

the positions of the vertices, making some edge lengths significantly

larger than the rest. In such cases, optimizing the 2D smocking

pattern to achieve a closed Tangram in such a distorted configuration

becomes infeasible. However, due to our choice of a near-isometric

parameterization derived from near unit-length directional fields,

the lifted 3D Tangrams we experimented with were all feasible. It

would be interesting to delve into the theoretical guarantees for

realizable 3D Tangrams in future work.

While the geometric features of the pleats appear similar when

fabricated with different materials, the exact shapes can vary due to

differences in stiffness or bending properties of the materials used.

For instance, in Fig. 2 (right), a heavy-weight synthetic crepe fabric

is utilized, whereas in Fig. 19 (b), stretchy denim is used to fabricate

the WaterBomb pattern, resulting in different crease patterns. Our

preview tool does not take this into consideration. For more realistic,

material-aware, and self-intersection-free outcomes, the adoption

of advanced physical simulators, such as C-IPC [Li et al. 2021], is

recommended.

One interesting direction for future work is to investigate the

insulating and mechanical properties of the smocked fabric. For ex-

ample, during fabrication, we noted that the smocked fabric exhibits

elasticity under strong external forces. Moreover, fabric formwork

with smocking also holds promising potential in concrete form-

ing, as identified by Scherer [2019]. The predicted geometry of the

smocked shape from our algorithm can be effectively integrated

with the techniques proposed by Zhang et al. [2019] to design mod-

ified smocking patterns, specifically tailored for formwork, with

special considerations for how filling materials affect the smocked

fabric.

Throughout our research and experiments, we observed intrigu-

ing connections between smocking design, origami tessellation, and

auxetic material design. Much like the deployment of surfaces using

auxeticmaterials, fabric tessellation can accurately drape over a solid

object, forming a tight cover. However, unlike paper or cardboard

origami, fabric tessellation may not always maintain its intended

shape without support or stuffing, as the material itself is less stiff.

Exploring the similarities and differences among these disciplines

presents a fascinating avenue for further investigation, potentially

inspiring mutual advancements. One intriguing problem is deriv-

ing a smocking pattern from an origami pattern and vice versa.

Additionally, considering the introduction of cuts into smocking,

analogous to the introduction of cuts into origami (i.e., kirigami),

could broaden the design space and expand the spectrum of feasible

surfaces that can be well approximated. We also posit that there

is untapped theoretical richness in smocking—specifically, under-

standing how to achieve precise target curvatures through stitching

in a general sense, extending beyond the specific patterns discussed

in this work. These captivating questions are left for exploration in

future studies.
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Leaf
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Box

Brick

Diamond

Fig. 27. From left to right, we show the smocking pattern, open Tangram,
and the closed Tangram for five different patterns. We highlight the underlay
edges in the smocking pattern in blue. The underlay and pleat faces in the
open/closed Tangram are colored in blue and pink respectively.

and to extract the smocked graph, while a higher-resolution grid

is used to compute the detailed mesh deformation showing the

final smocking design. More specifically, given a smocking pattern

P = (V, E,L) with stitching lines L defined on the grid graph

(V, E), the smocked graph S = (VS, ES) is constructed from

the graph (V, E) by (1) fusing all underlay vertices sharing the

same stitching line into a single vertex, and (2) deleting edges that

become degenerated or duplicate as a result of the fusing of underlay

vertices. This smocked graph captures the non-manifold structure of

the resulting smocking design. The fused vertex from the stitching

line ℓ is denoted as 𝑣ℓ .

The smocked graph is then embedded in 3D and used to guide the

deformation of the finer-resolution fabric using as-rigid-as-possible

(arap) deformation [Sorkine and Alexa 2007], obtaining the final

smocking design. The key observation to help embed the smocked

graph is that the local geometry is modified after stitching. Specif-

ically, before stitching, the embedded positions of two arbitrary

vertices on the fabric are constrained by the their geodesic distance

on the fabric. After stitching, since multiple underlay vertices are

contracted together and pinched to the same position, the embedded

positions (xℓ𝑖 , xℓ𝑗 ) of two underlay vertices (𝑣ℓ𝑖 , 𝑣ℓ𝑗 ) from different

stitching lines (ℓ𝑖 , ℓ𝑗 ) are constrained by the shortest geodesic dis-
tances among any pair of vertices in the two stitching lines [Ren

et al. 2024, Eq. (3)]:xℓ𝑖 − xℓ𝑗 2 ≤ 𝑑𝑖, 𝑗 , where 𝑑𝑖, 𝑗 = min

𝑣𝑝 ∈ℓ𝑖 , 𝑣𝑞 ∈ℓ𝑗
𝑑 (𝑣𝑝 , 𝑣𝑞) . (6)

This so-called embedding distance constraint can be generalized and

derived for any pair of vertices inVS . These distance constraints
are used to embed the smocked graph in 3D while encouraging the

vertices to stay away from each other to avoid a trivial solution.

After some relaxations, the smocked graph is embedded via:

min

X∈R |VS |×3

∑︁
(𝑣𝑖 ,𝑣𝑗 ) ∈ES

( x𝑖 − x𝑗 
2
− 𝑑𝑖, 𝑗

)
2

. (7)

Another important observation from fabrication is that the underlay

vertices remain on the same plane after stitching and only the pleat

vertices are pushed out of plane. Therefore, Eq. (7) is solved in a two-

stage optimization, where the underlay vertices are firstly enforced

to be embedded in 2D and then the pleat vertices are embedded in

3D with fixed underlay vertices.

One potential solution to adapt this method for inverse design is

to let the distance constraints 𝑑𝑖, 𝑗 encode the geometry of the target

surface, and solve for the 2D positions of the stitching lines such

that 𝑑𝑖, 𝑗 are realized when Eq. (6) is applied. More specifically, we

can sample on the target surface to obtain the expected 3D positions

for the smocked graph, from which we can compute the distance

constraints, e.g., the lower bound of 𝑑𝑖, 𝑗 in Eq. (6). The next step is

to move the stitching lines in the fabric plane such that the induced

embedding distance constraints 𝑑𝑖, 𝑗 from Eq. (6) are consistent with

the ones derived from the input 3D surface.

However, this solution is extremely hard to realize since (i) the

derivation of the distance constraints 𝑑𝑖, 𝑗 is discrete, making it hard

to modify the smocking pattern to achieve the target 𝑑𝑖, 𝑗 ; (ii) 𝑑𝑖, 𝑗
provides the upper bound for the embedded distance such that the

fabric won’t tear up after stitching. There is no theoretical guarantee
that smocked fabric can be embedded (after optimization in Eq. (7))

at the exact sampled locations to approximate the target surface

even with carefully design𝑑𝑖, 𝑗 . As a comparison, our Tangram-based

approach avoids these pitfalls: the Tangram maintains a topolog-

ically one-to-one map between the 2D smocking pattern and the

3D smocked results without any discrete operations. Moreover, the

exact metrics are achieved to approximate the target surface thanks

to the mesh-like structure of the closed Tangram.

B SMOCKING PATTERNS AND THEIR TANGRAMS
In Fig. 27 we show the different smocking patterns and their Tan-

gram in open and closed configuration, including Leaf pattern (used

in Fig. 4, Fig. 15, and Fig. 17), Heart pattern (used in Fig. 17 and

Fig. 21), Box pattern (used in Fig. 17), Brick pattern (used in Fig. 4),
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ℓ𝑓1 𝑓4

𝑓3

𝑓2

Fig. 28. Left : an under-constrained smocking pattern (cf. Fig. 14 in [Ren
et al. 2024]). Right : the corresponding Tangram, where blue (pink) indicates
the underlay (pleat) faces.

and Diamond pattern. We can see that, similar to the Arrow pat-

tern (shown in Fig. 6), the Brick and Diamond pattern have their

pleat faces completely vanish after the Tangram is closed. It is worth

noting that the Diamond pattern has disconnected underlay faces.

Another interesting observation is that the closed Tangram of the

Leaf pattern and the Heart pattern have similar structure though

their topology are very different in the open configuration. We find

that Tangram is a helpful tool to understand the differences or simi-

larities between various patterns, which may not be obvious from

the alignment of the stitching lines in the smocking pattern.

We also observe that the extracted Tangram can be used to deter-

mine if a smocking pattern is well-constrained, providing valuable

insights for designing new patterns. Ren et al. [2024, Sec. 5] discuss
heuristics for the design of a well-constrained 2D smocking pattern.

This ensures that the fabricated result strikes a balance, avoiding

being too “loose”, where the underlay vertices have excessive free-

dom, or too “tight”, which would force the underlay vertices out of

plane. However, the provided guideline is somewhat experimental,

requiring the execution of the proposed method and subsequent

verification if the optimized embedding reaches zero energy. In con-

trast, our new formulation using Tangram in Sec. 4.2 offers a more

principled guideline for regular 2D smocking pattern design:

Remark B.1. A smocking pattern is well-constrained if a closed

configuration exists for its Tangram.

Specifically, if a closed configuration exists for the Tangram of a

smocking pattern, according to Def. 4.3, it implies that after stitching

(i.e., when the Tangram reaches a closed state), the result achieves

a balanced state, as the underlay faces undergo only rigid trans-

formations without distortion. On the other hand, if such a closed

configuration does not exist, it means that after fabrication, when

the stitching lines are forced to have zero length, the underlay faces

become distorted, leading to undesirable pleats. Consider the under-

constrained smocking pattern discussed in [Ren et al. 2024, Fig. 14],

where the width of the middle grid cells is doubled (cf. Fig. 28 left).

We show its Tangram on the right of Fig. 28, with blue (pink) rep-

resenting the underlay (pleat) faces. The pleat face containing the

stitching line ℓ is surrounded by four underlay faces 𝑓1, · · · , 𝑓4. For
this example, it becomes apparent that it is impossible to rigidly

rotate the underlay faces 𝑓𝑖 such that the length of the stitching

line ℓ can be reduced to 0, implying that this smocking pattern

does not have a closed configuration. In summary, remark B.1 of-

fers a more principled guideline for designing a well-constrained

smocking pattern.

Fig. 29. Compare to the naive remeshing method (left), our algorithm pro-
duces a seamless remeshing with a more isometric parameterization (right),
which better suited for the inverse design of smocking. We highlight the
singularities in blue.

C DIRECTIONAL FIELDS FOR PARAMETERIZATION
In this section, we discuss the algorithmic details for the parameteri-

zation step discussed in Sec. 5.2. We first give a brief introduction to

directional fields, then provide the full algorithm to solve for 𝑁 -field

(for 𝑁 = 3, 4, 6) with singularities for seamless smocking, and our

variation for singularity-free fields for smocking patterns that only

contain translational symmetry.

C.1 Background: Directional fields
Consider a triangle mesh M = (VM , EM , FM ). Our goal is to
compute a curl-free 𝑁 -directional field that can be integrated to

achieve a seamless parameterization. Let F𝑐 ⊂ FM be the set of faces

with input alignment constraints z𝑓 ,∀𝑓 ∈ F𝑐 . These constraints

arise from user-specified alignment orientations for selected faces

or aligning-to-boundary requirements for boundary faces.

C.1.1 Raw representation. The raw representation of an𝑁 -directional

field Y is an array of 𝑁 complex numbers for each face 𝑓 ∈ FM :

Y (𝑓 ) =
(
y1 (𝑓 ) , · · · , y𝑁 (𝑓 )

)T
, where y𝑖 (𝑓 ) ∈ C encodes the coor-

dinates of the vector in a local frame, and where they are ordered

counterclockwise around the normal to the face.

Given a raw 𝑁 -field, we can find the principal matching I𝑒 ∈ Z
for any edge 𝑒 = 𝑓 ∩ 𝑔 (denoting the edge 𝑒 shared by face 𝑓 and 𝑔):

y𝑛 (𝑓 ) is matched to y𝑛+I𝑒 (𝑔) (modulo 𝑁 ) with the smallest rotation

angle. We denote this step as:

I← PrincipalMatching (Y) . (8)

Given an order-preserving matching I, the field is curl-free when

Re

(
y𝑛 (𝑓 )e𝑓

)
= Re

(
y𝑛+I𝑒 (𝑔)e𝑔

)
,∀𝑛 = 1 · · ·𝑁 . (9)

Here, e𝑓 , e𝑔 ∈ C are the representation of the shared edge 𝑒 in the

local frames of faces 𝑓 , 𝑔 respectively. These constraints are linear

and therefore can be represented in a compact matrix form𝐶IY = 0

for a given matching I = {I𝑒 }.
We can normalize the raw vector fields to have unit length. We

call this step Y∗ = Normalize(Y) satisfying:

y∗𝑛 (𝑓 ) ←
y𝑛 (𝑓 )
|y𝑛 (𝑓 ) |

,∀𝑓 ∈ FM ,∀𝑛 = 1 · · ·𝑁 . (10)
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parameterization smocked results (preview)

conformal

isometric

side view top view

Fig. 30. Compared to using conformal (top) parameterization, isometric
(bottom) parameterization suits better for fabric tessellation as it results in
more uniformly sized pleats and lower shape approximation error.

C.1.2 Closeness. The closeness energy between two 𝑁 -field Y and

Y∗ in raw representations is defined as follows:

E
closeness

(
Y,Y∗

)
=

∑︁
𝑓 ∈FM

𝑁−1∑︁
𝑛=0

𝐴𝑓

�� y𝑛 (𝑓 ) − y∗𝑛 (𝑓 ) ��2 , (11)

where 𝐴𝑓 is the area of face 𝑓 .

C.1.3 Curl-free projection with alignment constraints. We can find

a curl-free field closest to a given field Y while respecting the input

alignment constraints, if any. Specifically, for each constrained face

𝑓 ∈ F𝑐 , we find the closest vector in y(𝑓 ) that aligns with the

constrained direction z𝑓 and we denote the corresponding index as

𝑖 𝑓 , i.e., we have 𝑖 𝑓 = argmin

𝑗=0,· · · ,𝑁−1
|y𝑗 (𝑓 ) − z𝑓 |. We then solve for a

new field Ỹ as follows:

min

Ỹ
𝜆𝑐 Ecloseness

(
Ỹ, Y

)
+ 𝜆𝑎

∑︁
𝑓 ∈F𝑐

𝐴𝑓

��� ỹ𝑖𝑓 (𝑓 ) − z𝑓 ���2 ,
s.t. 𝐶IỸ = 0,

(12)

where𝐶I stores the curl-free constraint per edge from the principal

matching I in a compact matrix form. The result Ỹ is a curl-free field

close to the input field Y while respecting the alignment constraints.

We denote this step as ProjCurl (Y, I).

C.1.4 PolyVector representation. To allow for the singularities in

the field to naturally emerge without discrete optimization, we also

work with the PolyVector representation [Diamanti et al. 2014],

which encodes the raw vector field Y as the roots of a monic poly-

nomial with (complex) coefficients Γ :

Γ = PolyVector (Y) = (𝑧 −y1) · ... · (𝑧 −y𝑁 ) = 𝑧𝑁 +
𝑁−1∑︁
𝑛=0

Γ𝑛𝑧
𝑛 . (13)

We also consider the inverse transformation Y = PolyVector
−1 (Γ)

that extracts the roots of the polynomial represented by Γ. The close-
ness energy Eq. (11) also applies in the PolyVector representation:

E
closeness

(
Γ, Γ∗

)
=

∑︁
𝑓 ∈FM

𝑁−1∑︁
𝑛=0

𝐴𝑓

�� Γ𝑛 (𝑓 ) − Γ∗𝑛 (𝑓 ) ��2 . (14)

C.1.5 PolyVector alignment. We can use PolyVector field repre-

sentation to incorporate alignment constraints. Specifically, we

follow [Meekes and Vaxman 2021] and project each polynomial

ALGORITHM 1: Computing 𝑁 -fields

Input :Triangle meshM and optional alignment

constraints z𝑓 on faces 𝑓 ∈ F𝑐
Output :A curl-free 𝑁 -field Y with singularities

Parameters :𝜆𝑠 = 10, 𝜆𝑟 = 0.1, 𝜆𝑐 = 0.1, 𝜆𝑎 = 100

1 initialize a smooth power field Γ (0) , where Γ (0)𝑛 = 0, 𝑛 > 0,

Γ
(0)
0

= argmin

𝑈

E
smooth

(𝑈 ) s.t.𝑈 (𝑓 ) = −(z𝑓 )𝑁 ∀𝑓 ∈ F𝑐

2 set 𝑘 ← 0

3 Γ (𝑘+1) ← argmin

Γ
Epv

(
Γ, Γ (𝑘 )

)
4 Y← PolyVector

−1 (Γ (𝑘+1) )
5 Y← Normalize(Y)
6 I← PrincipalMatching(Y)
7 Y(𝑘+1) ← ProjCurl (Y, I)
8 Γ (𝑘+1) ← PolyVector

(
Y(𝑘+1)

)
9 set 𝜆𝑠 ← 0.8𝜆𝑠 and 𝑘 ← 𝑘 + 1; then go to step 3

at a constrained face to the closest PolyVector polynomial that

satisfies the alignment constraint at the face. We denote the pro-

jected PolyVector as PΓ , which satisfies that: for a constrained face

𝑓 ∈ F𝑐 , z𝑓 is one of the roots of PΓ (𝑓 ). The alignment energy

for the PolyVector field Γ is then its difference from the projected

PolyVector PΓ at the constrained faces:

E
align
(Γ) =

∑︁
𝑓 ∈F𝑐

𝑁−1∑︁
𝑛=0

𝐴𝑓 | Γ𝑛 (𝑓 ) − (PΓ)𝑛 (𝑓 ) |2 . (15)

C.1.6 Power fields. An important subspace of PolyVector fields is

that of power fields, where Γ𝑛 = 0,∀𝑛 > 0, and all vectors in a face are

in perfect symmetry (an 𝑁 -RoSy). The power field is further of unit-

length when | Γ0 | = 1 [Meekes and Vaxman 2021; Verhoeven et al.

2022]. We can therefore define the following energy to encourage Γ
be a unit-length power field:

ERoSy (Γ) =
∑︁

𝑓 ∈FM
𝐴𝑓

©«
������ Γ0 (𝑓 ) − Γ

(𝑘 )
0
(𝑓 )��� Γ (𝑘 )

0
(𝑓 )

���
������
2

+
𝑁−1∑︁
𝑛=1

| Γ𝑛 (𝑓 ) |2
ª®®¬ ,
(16)

where the first term enforces the unit-length requirement while the

rest enforcing vanishing coefficients. It worth noting that when 𝑁 is

an even number, the field has a sign symmetry (only
𝑁
2
vectors are

distinct, and the rest is given as the negation of these vectors). The

PolyVector representation will only have non-zero coefficients for

the even powers of 𝑧. In this case, the vanishing coefficients energy

term only includes the even 𝑛.

C.1.7 Smooth fields. We define the smoothness of a PolyVector field
Γ as follows:

E
smooth

(Γ) =
∑︁

𝑒∈EM
𝑒=𝑓 ∩𝑔

𝑁−1∑︁
𝑛=0

𝐴𝑒

��� Γ𝑛 (𝑓 ) e𝑓 𝑁−𝑛 − Γ𝑛 (𝑔) e𝑔𝑁−𝑛 ���2 .
(17)
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ALGORITHM 2: Computing singularity-free Fields

Input :Triangle meshM
Output :Two curl- and singularity free coupled fields 𝑌

Parameters :𝜆𝑠 = 10, 𝜆𝑐 = 0.1, 𝜆𝑜 = 0.1

1 initialize a smooth raw 2-field Y(0) =
(
𝑈 (0) ,𝑉 (0)

)
:

𝑈 (0) ← argmin

𝑈

E
smooth

(𝑈 ) and 𝑉 (0) ← 𝑖𝑈 (0)

2 set 𝑘 ← 0

3 Y← argmin

Y
Eraw

(
Y, Y(𝑘 )

)
4 Y← Normalize(Y)
5 Y(𝑘+1) ← ProjCurl (Y, I)
6 set 𝜆𝑠 ← 0.8𝜆𝑠 and 𝑘 ← 𝑘 + 1; then go to step 3

We use the same weight 𝐴𝑒 as in [Verhoeven et al. 2022], i.e., for an

edge 𝑒 = 𝑓 ∩ 𝑔 we set 𝐴𝑒 =
|𝑒 |
|𝑒dual |

𝐴𝑓 +𝐴𝑔

2
with 𝐴𝑓 and 𝐴𝑔 denoting

the areas of faces 𝑓 and 𝑔 respectively, and |𝑒
dual
| is the sum of the

lengths of the two edges connecting the centroid of the adjacent

faces to the midpoint of the edge 𝑒 . Recall e𝑓 , e𝑔 ∈ C are the rep-

resentation of the shared edge 𝑒 in the local frames of faces 𝑓 , 𝑔

respectively. The smoothness of a vector field y is a special case

with 𝑁 = 1, i.e.,

E
smooth

(y) =
∑︁

𝑒∈EM
𝑒=𝑓 ∩𝑔

𝐴𝑒

�� y (𝑓 ) ef − y (𝑔) eg ��2 . (18)

C.2 Computing 𝑁 -Fields with singularities (𝑁 = 3, 4, 6)
In Algorithm 1 we show the full details of computing an 𝑁 -field.

We use the following energy to improve a given PolyVector Γ∗:

Epv

(
Γ, Γ∗

)
= 𝜆𝑠 Esmooth

(Γ) + 𝜆𝑟 ERoSy (Γ) · · ·
+ 𝜆𝑐 Ecloseness

(
Γ, Γ∗

)
+ 𝜆𝑎 Ealign

(Γ) .
(19)

We then convert the field to its raw representation and apply a unit-

length projection. This step is taken to promote a more isometric

parameterization upon integration, see Fig. 29. In smocking design,

more isometric parameterization usually leads to more regularly

sized pleats and better shape approximation, as shown in Fig. 30.

After normalizing the field, we proceed with a curl projection step,

as described in Eq. (12), to reduce the integrability error of the field.

C.3 Computing singularity-free fields
Wemodify the algorithm for computing fieldswith a fixed singularity-

free matching, that can be integrated to a parameterization with a

low isometric distortion. Instead of working with PolyVector repre-

sentation, we only use the raw representation, and use two coupled

vector fields denoted as Y = (𝑈 ,𝑉 ). We initialize the first vector

field 𝑈 by minimizing the smoothness energy defined in Eq. (18),

with an initial alignment constraint on an arbitrary face to avoid

trivial solutions. The second vector field 𝑉 is initialized as 𝑉 = 𝑖𝑈 ,

i.e., by rotating 𝑈 of
𝜋
2
degree. We then optimize the following

energy to improve the smoothness of the fields while optimizing

(a) (b) (c) (d)

Fig. 31. Shrink-rotate algorithm (cf. [Lang 2017, Fig.6.1]). Take the original
tiling (a), shrink each polygon by the same factor shown in (b); rotate them
by the same angle shown in (c); connect vertices with new creases and
assign mountain-valley folds, obtaining the final folding pattern (d).

for orthogonality:

Eraw

(
Y,Y∗

)
=𝜆𝑠 Esmooth

(Y) + 𝜆𝑐 Ecloseness
(Y,Y∗)

+ 𝜆𝑜
∑︁

𝑓 ∈FM
|𝑉 (𝑓 ) − 𝑖 𝑈 (𝑓 ) |2 . (20)

Algorithm 2 describes the complete steps of computing these fields.

D SHRINK-ROTATE FOR ORIGAMI TESSELLATION
Origami tessellations often exhibit a unique property wherein the

symmetry of the tessellation aligns with an established tiling pat-

tern. In addition, each polygon from the original tiling is present

in both the crease pattern and the folded form, albeit shrunken

and rotated [Bateman 2002; Lang 2017; Rutzky and Palmer 2011].

This property offers a practical methodology for constructing crease

patterns in origami tessellation. Taking a given polygonal tiling

as an input, we can precisely shrink and rotate each polygon. This

process allows us to strategically introduce creases, making a valid

crease pattern in origami tessellation. Bateman [2002] presented a

realization of this concept in Perl, named Tess. We adopt the term

“shrink-rotate” as proposed in [Lang 2017] as it provides a more

informative and descriptive name for this approach.

Shrink-rotate is a very straightforward algorithm. See Fig. 31

for an illustration. Start with a 2D tiling, such as Euclidean tiling

by convex regular polygons, the algorithm proceeds as follows: (1)

Shrinkage: Each polygon is uniformly reduced in size, maintaining

a consistent scaling factor. This shrinking operation creates empty

spaces within the tessellation to facilitate folding. (2) Rotation:
Every polygon is rotated by a fixed angle to ensure the feasibility of

subsequent folding steps. The angle of rotation remains consistent
across all polygons within the tiling. (3)Connection: The shrunken-
and-rotated vertices that originated from the same initial vertex of

a polygon are connected with lines, resulting in the final crease

pattern. We refer the interested readers to Chapter 6 of [Lang 2017]

for more detailed discussions and implementations.

While our Tangram and the shrink-rotate algorithm share a sim-

ilar principle of allowing certain faces/regions to rotate rigidly to

achieve the desired pattern, they serve different purposes. The

shrink-rotate algorithm is tailored for the forward problem, i.e.,

constructing a valid crease pattern from a given polygon tiling. On

the other hand, our Tangram addresses the inverse problem. More

importantly, it is not confined to polygon tiling, as illustrated in

Figures 8 and 27.
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