
LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS 1

Supplementary:Learning to Construct 3D
Building Wireframes from 3D Line Clouds

Yicheng Luo1,2, Jing Ren1,3

Xuefei Zhe1, Di Kang1

Yajing Xu2, Peter Wonka4

Linchao Bao1

1 Tencent AI Lab
2 Beijing University of Posts And
Telecommunications

3 ETH Zurich
4 KAUST

1 Implementation details

1.1 Network Architecture

In Fig. 1, we show the full details of our network structure, which can help to easily repro-
duce our network. Specifically, in our experiments, we sampled 256 line patches for junction
prediction and sampled 1024 line patches for connectivity prediction for every building dur-
ing training. During testing, we sampled line patches for all pairs of predicted junctions for
connectivity prediction. We apply two transformer [8] encoders to extract a 256-dim feature
for each line patch, where the first transformer encoder attends to the 32 neighboring line
segments in each line patch, and the second transformer encoder attends to all the sampled
line patches. We use layer normalization and ReLU activation in our transformer encoder.
And the latent state size is 256. Our junction/connectivity classifier and junction regressor
are formed by fully-connected layers. Note that our connectivity classifier predicts five labels
for each selected pair of predicted junctions as discussed in Sec. 4.4 (main paper).

1.2 Training details

We use the ADAM [2] during the training. The learning rate and weight decay are set to
1× 10−3 and 1× 10−5. All experiments are conducted on four Tesla V100 GPUs with
a batch size of 32 (8 for each GPU). We train our junction predictor for 40 epochs and
connectivity predictor for 25 epochs. We set the loss weight λv,λe to 1,10, respectively. We
also randomly rotate, rescale and shift the line clouds as data-augmentation. We use our
BuildingWF dataset for training and testing. Fig. 2 for some examples. We split training and
testing dataset based on the number of vertices of wireframe model, making the distribution
of the number of vertices in training set and test set the same.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

Citation
Citation
{Kingma and Ba} 2014

2 LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS
In

p
u

t
(N

,
6

)

li
n

e
 p

a
tc

h
e
s

(2
5

6
,

3
2

,
7

)

F
C

s(
2

5
6

,
3

2
,

2
5

6
)

T
ra

n
sf

o
rm

e
r(

2
5

6
,

3
2

,
2

5
6

)

P
o

o
li
n

g
(2

5
6

,
2

5
6

)

T
ra

n
sf

o
rm

e
r(

2
5

6
,

2
5

6
)

li
n

e
 p

a
tc

h
e
s

(1
0

2
4

,
6

4
,

6
)

F
C

s(
1

0
2

4
,

6
4

,
2

5
6

)

T
ra

n
sf

o
rm

e
r(

1
0

2
4

,
6

4
,

2
5

6
)

P
o

o
li
n

g
(1

0
2

4
,

2
5

6
)

T
ra

n
sf

o
rm

e
r(

1
0

2
4

,
2

5
6

)

F
C

s(
2

5
6

,
1

)
F
C

s(
2

5
6

,
3

)

F
C

s(
1

0
2

4
,

5
)

ju
n

ct
io

n

cl
a
ss

if
ie

r
ju

n
ct

io
n

re

g
re

ss
o

r

co
n

n
e
ct

iv
it

y

cl
a
ss

if
ie

r

Figure 1: Network Structure. We report the size of the output tensor at each layer.

Figure 2: BuildingWF Dataset. Top: GT 3D wireframes. Bottom: multi-view images.

1.3 Comparison Configuration

For all the baselines, we fine-tuned the hyper-parameters using the publicly released codes.
Specifically, for Line2Surface [3], we set the line-to-plane distance threshold ε to 2 in plane
detection and set the weight of cost visibility to 1.4 in surface reconstruction. We use the
default values for the rest parameters. We use the default implementation of PolyFit with
region growing provided in CGAL[7], which extracts candidate planes for input of Polyfit.

In Tab. 1 in the main paper, we report the average runtime over 756 test buildings (without
considering the data preparation and post-processing time). Here in Tab. 1 we report a more
detailed runtime comparison. Specifically, for each method we report the data preparation
time and wireframe/mesh reconstruction time. We also report the runtime for each individual
step during the reconstruction. The runtime of post-processing (i.e., to simply a mesh into
a wireframe or apply NMS to prune predicted wireframe) is also reported. For example, on
average, it takes 19.5 second to prepare a line cloud for line3Dpp and our method, while it
takes 63.8 second to prepare a point cloud for PolyFit and PC2WF from the same set of multi-
view images. The line cloud reconstruction is more efficient than point cloud reconstruction
due to the sparsity of line segments (point cloud reconstruction outputs about 80k points

Table 1: Runtime Comparison (in second). We report the average runtime over 756
test building. Line3Dpp and line2Surf are tested on an Inter(R) Xeon(R) platinum 8255C
2.50GHz CPU. PC2WF and LC2WF are tested on Tesla V100 GPU. Polyfit and point cloud
reconstruction are performed on a Quadro RTX 4000 GPU and an Intel(R) Core(TM) i9-
9880H 2.30GHz CPU.

Method Data prep. pre-processing junc. pred. edge pred. plane pred. surf. recon. post-processing Total

line3Dpp 19.5 13.9 - - - - - 33.1
line2Surf 33.1 - - - 163.2 57.6 0.21 253.9
PolyFit 63.8 - - - 40.4 5.64 0.067 110.0
PC2WF 63.8 5.21 4.94 26.1 - - 0.15 100.2

Ours 19.5 - 0.18 0.72 - - 0.012 20.4

Citation
Citation
{Langlois, Boulch, and Marlet} 2019

Citation
Citation
{The CGAL Project} 2022

LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS 3

while line cloud reconstruction outputs 1400 line segments). This suggest that there is less
overhead to construct wireframes from line clouds than from point clouds

2 Additional results

2.1 Evaluation Metrics

Precision & Recall: Precision is the fraction of the true positive predictions (e.g., predicted
junctions/edges) whose distance to their nearest ground-truth is smaller than the threshold
η , among all the predictions. Recall is the fraction of the ground-truth that is successfully
retrieved by the predictions up to the threshold distance η . We can report different precision-
recall pairs for different choices of η . A high precision and high recall suggests a high ac-
curacy and a clean predicted model. In particular, for PC2WF and our method, a confidence
score is associated with the predictions. We therefore compute the exact precision-recall
(PR) curve w.r.t. the confidence scores and compute the area below PR-curve as the average
precision. For simplicity, we denote the precision and recall for different methods as APη

and Recallη and report them in the same tables. However, line3Dpp, line2Surf, and Polyfit
results let us only compute a single value for precision and recall and not an average stem-
ming from a PR curve. In our experiments, we set η to 0.15m, 0.25m, and 0.35m. We also
report the average APη and Recallη over the three choices of η . Similar to [4], we report the
precision and recall on both predicted junctions and wireframes:
(1) vAPη and vRecallη show the precision/recall on the predicted junctions.
(2) sAPη and sRecallη report the structural quality of the predicted wireframes. Specif-
ically, it checks if a predicted edge is a true positive or if a ground-truth edge is retrieved
according to the distances between the edge endpoints.

Wireframe Edit Distance (WED) reports the number of operations and the editing dis-
tances of adding/removing predicted junctions/edges that are needed to transform the graph
structure of the predicted wireframe into the ground-truth wireframe. This metric shows the
topological errors of the reconstructed wireframe. A smaller value suggests a more accu-
rate topology. We follow [4] and use a simplified version of the edit distance to make it
computationally tractable.

Table 2: Precision/Recall of predicted junctions (vAP/vRecall) and predicted wireframe
models (sAP/sRecall) on direct output results. We highlight the best (in red) and the second
best (in orange) results.

output vAPη /vRecallη (%) sAPη /sRecallη (%)
Method

|V | |E | η = 0.15 η = 0.25 η = 0.35 avg. η = 0.25 η = 0.35 η = 0.50 avg.

line3Dpp 240 120 8.90/98.1 8.92/98.3 8.93/98.4 8.92/98.3 24.7/80.8 25.4/83.0 25.9/84.6 25.3/82.8

line2Surf. 304 89 6.31/88.0 6.45/89.9 6.50/90.6 6.42/89.5 1.10/27.1 1.15/28.5 1.23/30.4 1.16/28.7
PolyFit 183 250 8.99/75.1 10.5/87.6 10.8/90.4 10.1/84.4 4.16/28.3 5.58/37.9 6.56/44.5 5.43/36.9
PC2WF 69 986 11.0/33.2 36.2/61.3 46.3/70.6 31.2/55.1 0.35/14.5 2.86/37.5 8.22/58.1 3.81/36.7

Ours 47 126 91.2/93.9 93.3/95.9 93.9/96.4 92.8/95.4 84.3/90.9 86.8/93.4 87.7/94.5 86.3/92.9

Citation
Citation
{Liu, D'Aronco, Schindler, and Wegner} 2020

Citation
Citation
{Liu, D'Aronco, Schindler, and Wegner} 2020

4 LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS

Table 3: Wireframe Edit Distance (WED) of the reconstructed wireframes. We report the
number of operations (Num) and the editing distances in meters (Dist).

Topology (WED) +vertex (WED) +edge (WED) -edge (WED) Total
Method

|V | |E | Num.
Dist.
(m)

Num.
Dist.
(m)

Num.
Dist.
(m)

Num.
Dist.
(m)

ground-truth 22 ± 10 37 ± 16 - - - - - - - -

line3Dpp [1] 240 ± 140 120 ± 70 0.104 59.27 2.074 8.917 49.60 255.7 51.77 323.9
Line2Surf. [3] 68 ± 68 89 ± 89 1.012 13.78 6.223 35.76 9.427 48.77 16.66 98.31
PolyFit [5] 29 ± 15 43 ± 21 1.681 3.170 4.811 21.41 0.969 5.285 7.463 29.86
PC2WF [4] 22 ± 7 34 ± 13 5.216 3.445 17.01 87.94 4.622 33.38 26.84 124.8

Ours 23 ± 10 39 ± 20 0.766 1.810 2.880 11.49 1.655 14.03 5.301 27.33

2.2 More results
As mentioned in Sec.5.3 (main paper), we post-process the output meshes into wireframes to
make a fair comparision. Here, we report the evaluation on both direct outputs(Tab. 2,Fig. 3)
and results after post-processing(Tab.2a and Fig.3 in main paper).

In Tab. 2 we measure the accuracy of the reconstructed buildings in the form of line
clouds (line3Dpp), meshes (line2Surf and PolyFit), and wireframes (PC2WF and ours).
Specifically, we report the average number of vertices (|V|) and edges (|E|) over all the tested
buildings. We then evaluate the precision/recall of the predicted junctions and the predicted
structure by considering all the predicted edges in the line clouds/meshes/wireframes. We
can see that Line3Dpp has the highest recall on junction prediction (vRecall) and achieves the
second best on structure prediction (sAP,sRecall). As a comparison, our method achieves
comparable recall on junction prediction with 80% fewer predicted junctions. Moreover, our
method obtains results with significantly higher structural accuracy compared to Line3Dpp.

(a) commercial
software

(b) line clouds (c) line3Dpp (d) line2Surface (e) PC2WF (f) PolyFit (g) Ours (h) ground-truth

Figure 3: Direct output before post-processing using Line3Dpp [1], Line2Surface [3], Poly-
Fit [5], PC2WF [4], and ours.

Citation
Citation
{Hofer, Maurer, and Bischof} 2017

Citation
Citation
{Langlois, Boulch, and Marlet} 2019

Citation
Citation
{Nan and Wonka} 2017

Citation
Citation
{Liu, D'Aronco, Schindler, and Wegner} 2020

Citation
Citation
{Hofer, Maurer, and Bischof} 2017

Citation
Citation
{Langlois, Boulch, and Marlet} 2019

Citation
Citation
{Nan and Wonka} 2017

Citation
Citation
{Liu, D'Aronco, Schindler, and Wegner} 2020

LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS 5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Direct Output
junction

Recall

Pr
ec

is
io

n

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

wireframe

Recall
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

After Postprocessing
junction

Recall
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

wireframe

Recall

ours

PC2WF

PolyFit

line2Surf.
line3Dpp
η=0.15

η=0.25

η=0.35

Figure 4: Precision-Recall curves of direct outputs (the left two figures) and results after
post-processing (the right two figures), corresponding to Tab. 2 and Tab. 2a (main paper)
respectively.

underlying
building

(a) line (segment) cloud

colocated

short line
segments

noisy

(b) line patch of the
sampling point

(c) sampled points
according to density & FPS

point-to-line
distance

sample from the
line endpoints

(d) junction predictor:
classifier + regressor

not a junction
a junction
predicted position

(e) edge predictor

Figure 5: 2D illustration. Given a noisy line cloud (a), we collect line patches based on
point-to-line distance (b) for samples (c) to construct building wireframe, via a junction
predictor (d) and a edge predictor (e). Note that our junction predictor (d) includes a classifier
to tell whether a junction exists (blue circles) or not (yellow circles), and a regressor to
predict/correct the junction position (red dots).

Figure 6: Input line clouds, ground-truth (red) and our reconstructed wireframes (black).

In Fig. 3 we show the direct output (without any post-processing steps) of different meth-
ods, which corresponds to Fig. 3 (main paper). Fig. 4 visualizes the precision-recall curves
that correspond to Tab. 2 and Tab.2a (main paper). And we show more results of our recon-
structed wireframe in Fig. 6.

Tab. 3 shows the full experiment results of the wireframe edit distance for different meth-
ods after post-process.

6 LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS

2.3 Ablation Study

Table 4: Ablation on LPT (vAPη/vRecallη)
LPT Structure η = 0.15 η = 0.25 η = 0.35 avg.

ours 90.3/95.2 91.6/96.6 92.1/97.2 91.3/96.3

MLP 85.0/94.6 86.1/96.2 86.6/96.9 85.9/95.9
Single-layer LPT 86.2/94.7 88.3/96.5 89.2/97.2 87.9/96.1

LPT Structure We conduct an abla-
tion study on the structure of our line-
patch transformer[8] (LPT) as shown in
Tab. 4. As discussed in Sec 4.2 (main
paper), our LPT has two layers of trans-
formers that first attend to the line seg-
ments in the neighborhood and then attend to all the line patches. We compare it to two
trivial alternatives (1) replace the transformer by an MLP; (2) use a single-layer transformer
that attends to all line segments in all sampled line patches at the same time. We can see that
our design choice achieves the best precision/recall.

Table 5: Ablation on Sampling (vAPη/vRecallη)
Sampling Strategy η = 0.15 η = 0.25 η = 0.35 avg.

ours 90.3/95.2 91.6/96.6 92.1/97.2 91.3/96.3

FPS w/out density 49.4/80.7 58.9/91.2 61.7/94.0 56.7/88.6
point-to-lineSeg 88.1/94.9 89.4/96.4 89.9/97.1 89.1/96.1

Sampling Strategy We also justify
our sampling strategy for line patch con-
struction via an ablation study as shown
in Tab. 5. As illustrated in Fig. 5,
there are two key steps in construct-
ing line patches for wireframe prediction
(Sec.4.3 main paper): (1) sample among the line endpoints based on density and FPS; (2)
construct a line patch at each sampled point based on point-to-line distance. We compare our
sampling strategy to another two alternatives: (1) only use FPS to sample without consid-
ering the density of points; (2) use the point-to-line-segment distance to collect neighboring
line segments. The results show that ours is the most effective strategy.

Table 6: Ablation on Edge Labels (sAPη/sRecallη)
Edge Labels η = 0.15 η = 0.25 η = 0.35 avg.

5 cate. 84.3/91.1 86.9/93.7 87.8/94.9 86.3/93.2
2 cate. 82.1/91.1 84.7/93.7 85.7/94.8 84.2/93.2

5 cate. + post. 76.8/84.7 80.6/87.1 83.9/89.5 80.4/87.1
2 cate. + post. 60.4/62.5 64.0/66.1 73.5/76.0 65.9/68.5

Edge Labels As discussed in
Sec.4.4 (main paper), we consider 5
categories of edge labels for a pair
of predicted junctions, namely (a) at
least one of the junctions are false
positive, or the potential graph dis-
tance between the two junctions is
(b) 0, (c) 1, (d) 2, (e) larger than 2. An alternative choice would be only considering 2 cases:
i.e., whether the selected junction pair is connected or not. Tab. 6 shows such an ablation
study. We can see that considering more detailed classifications for edges can help to learn
more information for edge prediction and pruning during post-processing. For example, if
two junctions are predicted to be true positive and have zero graph distance, only the junction
with higher confidence will be kept during post-processing, which is not feasible if we only
have two categories for edge labels.

Partial Reconstruction As mentioned in main paper, our method can get complete wire-
frame model from multi-view images cover the overall region of the underlying buildings.
We conduct an additional experiment by reconstructing meaningful 3D wireframe from par-
tial line/point clouds. See Fig. 7 for some examples, where the line/point clouds are extracted
from images where only half of the building is visible.

Citation
Citation
{Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin} 2017

LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS 7

line cloud ours

point cloud polyfit

Figure 7: Top: our wireframe reconstruction from partial line clouds; Bottom: PolyFit re-
construction from partial point clouds.

3 Post-processing for LC2PW
Since the number of sample line patches is much more than the number of vertices/edges in
the underlying wireframe, the predicted vertices and edges may be redundant. Recall that
our junction regressor gives the predicted positions for the junctions Vpred and the junction
classifier associates each predicted vertex pk with a confidence score c(pk). Then for each
pair of predicted junctions (pk,qk) ∈ Vpred ×Vpred, our connectivity classifier returns the
probability distributions over five categories, where we use the probability of having the
underlying graph distance to be 0 and 1, denoted as c0(pk,qk) and c1(pk,qk) respectively,
for edge pruning.

To get a clean wireframe structure, we need to prune redundant edges and vertices. Al-
gorithm 1 gives a detailed description for our post-processing steps. First, we use c0(·, ·),
the probability of a vertex pair to be identical, to prune the predicted junction (Line 3-4).
For a vertex pair (p,q), the procedure PRUNE-BY-PROB will remove the vertex with a lower
confidence c(·) if the value c0(p,q) is above a pre-defined threshold(Line 12-19). Then we
prune vertex using PRUNE-BY-GRAPH. This procedure PRUNE-BY-GRAPH takes a graph
(V,E) as input (Line 5). If the adjacency vectors1 of the two test vertices have a small Ham-
ming distance (i.e. share similar connected vertices) and the Euclidean distance between the
two vertices is small, which indicates the two vertices are probably the same junction, then
the vertex with a lower confidence c(·) will be removed (Line 21-29). We then use non-
maximum suppression (Line 7) to remove redundant edges that are close to each other (Line
31-39) and we also remove the isolated edges (Line 8, 41-48) to get the final wireframe. The
hyperparameters η0,η1,η2,η3 are set to 0.2,0.3,1.5,1 respectively.

We notice that sAP (the structural average precision) decreases about 5.9% after the
post-processing (see Tab. 2 and Table 2 in the main paper). The reason is that during post-
processing, the procedure LINE-NMS can remove short lines which are close to the ground-
truth wireframe, and the procedure MERGE-BY-PROB can remove a lot of vertices that are
close to ground-truth junctions and corresponding edges. In this case, we can get a clean
wireframe with small graph editing distances to the ground-truth wireframe, but the sAP
might get worse compared to the direct output.

4 BuildingWF Dataset Construction
Generate the line cloud. To get line cloud, we first need to synthesize multi-view images
I of the building with synthetic textures based on the provided surface labels (facades or

1Adjacency vector of a vertex is a corresponding rows in the adjacency matrix of the graph (V,E)

8 LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS

Algorithm 1 Post-Processing for LC2WF
Require: predicted junctions Vpred; vertex confidence c(·); probability of graph distance 0 or 1: c0(·, ·),c1(·, ·)

between two junctions; hyperparameters η0,η1,η2,η3.
1: procedure POST-PROCESS
2: V ← V pred

3: Ẽ ←{(p,q) | p,q ∈ V×V,c0(p,q)> η0}
4: V ← PRUNE-BY-PROB

(
Ẽ ,V

)
5: V ← PRUNE-BY-GRAPH

(
V,{(p,q) | p,q ∈ V×V,c1(p,q)> η1}

)
6: E ←{(p,q) | p,q ∈ V×V,c1(p,q)> η1}
7: E ← LINE-NMS

(
E
)

8: V,E ← REMOVE-ISOLATED-EDGE(V,E)
9: return

(
V,E

)
10: end procedure
11:
12: procedure PRUNE-BY-PROB(Ẽ ,V)
13: sort Ẽ w.r.t merge probability values c0(·, ·) in descending order
14: for all (v1,v2) ∈ Ẽ do
15: v← argmaxv∈{v1 ,v2} c(v)
16: V ← V\{v}
17: end for
18: return V
19: end procedure
20:
21: procedure PRUNE-BY-GRAPH(V,E)
22: sort V w.r.t confidence values c(·) in descending order
23: for all v ∈V do
24: if ∃v′ ∈ V\{v} : Hamming(v,v′)≤ 2 and Euclidean(v,v′)< η2 then
25: V ← V\{v′}
26: end if
27: end for
28: return V
29: end procedure
30:
31: procedure LINE-NMS(E)
32: sort E w.r.t probability values c1(·, ·) in descending order
33: for all e ∈ E do
34: if ∃e′ ∈ E\{e} : Dist(e,e′)< η3 then
35: E ← E\{e′}
36: end if
37: end for
38: return E
39: end procedure
40:
41: procedure REMOVE-ISOLATED-EDGE(V,E)
42: for e = (v1,v2) ∈ E do
43: if deg(v1) == 1 and deg(v2) == 1 then
44: E ← E\e; V ← V\{v1,v2}
45: end if
46: end for
47: return (V,E)
48: end procedure

roof). The synthetic textures are downloaded from the Internet. For each building, we render
roughly 32 images by moving the camera around the building twice with pitch angle at 45
and 60 degree respectively. We also add noise to the camera poses. Then we project the 3D
wireframe to each image plane using the corresponding camera parameters to get ground-
truth 2D wireframes, during which the self-conclusion is considered. After that, we use

LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS 9
(a) 3D GT wireframe (b) 2D GT wireframe (c) detected 2D lines (d) 3D line clouds

Figure 8: Construction of our BuildingWF Dataset. We collect the 3D building wireframe
models from [6] (a), and synthesize 2D multi-view images. The ground-truth 3D wireframe
can be projected to 2D image planes using the corresponding camera parameters to get the
ground-truth 2D wireframes in different views (b). We then use state-of-the-art 2D lines
detector to detect 2D lines from multi-view images, where the 2D ground-truth wireframes
are used to annotate the positive lines (colored in red) and the negative noisy lines (colored
in blue) as shown in (c). The detected 2D lines are then used to construct a 3D line colored
with corresponding labels (d) for training.

ELSD [9] to detect 2D line segments of each image. Finally, we feed the detected 2D line
segments and camera parameters to Line3Dpp [1] to reconstruct 3D line clouds.

Label the line cloud for training. Considering that the 3D line segments in the previously
constructed line cloud is less accurate than the detected 2D line segments [9], we use the
detected 2D line segments and the ground-truth 2D wireframe to label each line segment in
the line cloud. Specifically, each 3D line li of the reconstructed line cloud is paired with
a detected 2D line l2D

i . We match each detected 2D line segment to the ground-truth 2D
wireframe if their line-to-line distance is less than a threshold η . Then we can get the relation
between the generated 3D line cloud and the ground-truth 3D wireframe through the 2D
matching results. After that, we further associated it with two ground-truth junctions that are
endpoints of the corresponding edge. Finally, we can use labeled line clouds to supervise
our network training.

Citation
Citation
{Ren, Zhang, Wu, Huang, Fan, Ovsjanikov, and Wonka} 2021

Citation
Citation
{Zhang, Luo, Qin, He, and Liu} 2021

Citation
Citation
{Hofer, Maurer, and Bischof} 2017

Citation
Citation
{Zhang, Luo, Qin, He, and Liu} 2021

10LUO: LEARNING TO CONSTRUCT 3D BUILDING WIREFRAMES FROM 3D LINE CLOUDS

References
[1] Manuel Hofer, Michael Maurer, and Horst Bischof. Efficient 3d scene abstraction using

line segments. Computer Vision and Image Understanding, 157:167–178, 2017. ISSN
1077-3142.

[2] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[3] Pierre-Alain Langlois, Alexandre Boulch, and Renaud Marlet. Surface Reconstruction
from 3D Line Segments. In International Conference on 3D Vision (3DV), pages 553–
563, Québec City, Canada, September 2019. IEEE. doi: 10.1109/3DV.2019.00067.

[4] Yujia Liu, Stefano D’Aronco, Konrad Schindler, and Jan Dirk Wegner. Pc2wf: 3d wire-
frame reconstruction from raw point clouds. In International Conference on Learning
Representations (ICLR), 2020.

[5] Liangliang Nan and Peter Wonka. Polyfit: Polygonal surface reconstruction from point
clouds. In International Conference on Computer Vision (ICCV), pages 2353–2361,
2017.

[6] Jing Ren, Biao Zhang, Bojian Wu, Jianqiang Huang, Lubin Fan, Maks Ovsjanikov, and
Peter Wonka. Intuitive and efficient roof modeling for reconstruction and synthesis.
ACM Transactions on Graphics (TOG), 40(6):1–17, 2021.

[7] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 5.4 edi-
tion, 2022. URL https://doc.cgal.org/5.4/Manual/packages.html.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[9] Haotian Zhang, Yicheng Luo, Fangbo Qin, Yijia He, and Xiao Liu. Elsd: Efficient line
segment detector and descriptor, 2021.

https://doc.cgal.org/5.4/Manual/packages.html
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

