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Fig. 1. Given a pair of shapes, our method produces a point-wise map that is orientation-preserving as well as approximately continuous and bijective. Here
we show the maps produced by different methods via texture transfer: BIM [Kim et al. 2011] has a large distortion on the face and the left hand; functional
maps with ICP [Ovsjanikov et al. 2012] and PMF with the Gauss kernel [Vestner et al. 2017b] give a map that is flipped left to right; for PMF with the heat
kernel [Vestner et al. 2017a], the orientation in the torso region is reversed; The map produced by our method preserves the orientation consistently and has
lower overall error when compared to the ground-truth.

We propose a method for efficiently computing orientation-preserving and

approximately continuous correspondences between non-rigid shapes, using

the functional maps framework. We first show how orientation preservation

can be formulated directly in the functional (spectral) domain without using

landmark or region correspondences and without relying on external sym-

metry information. This allows us to obtain functional maps that promote

orientation preservation, even when using descriptors, that are invariant

to orientation changes. We then show how higher quality, approximately

continuous and bijective pointwise correspondences can be obtained from

initial functional maps by introducing a novel refinement technique that

aims to simultaneously improve the maps both in the spectral and spatial

domains. This leads to a general pipeline for computing correspondences

between shapes that results in high-quality maps, while admitting an effi-

cient optimization scheme. We show through extensive evaluation that our

approach improves upon state-of-the-art results on challenging isometric

and non-isometric correspondence benchmarks according to both measures

of continuity and coverage as well as producing semantically meaningful

correspondences as measured by the distance to ground truth maps.
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1 INTRODUCTION
Computing correspondences or maps between shapes is one of the

oldest problems in Computer Graphics and Geometry Processing

with a wide range of applications from deformation transfer [Sum-

ner and Popović 2004], statistical shape analysis [Bogo et al. 2014]

to co-segmentation and exploration [Huang et al. 2014] among a

myriad others. As a result a large number of approaches have been

considered to tackle this problem in a wide variety of settings in-

cluding rigid alignment [Besl and McKay 1992] and, more recently,

in the more general case of computing correspondences between

non-rigid shapes [Van Kaick et al. 2011].

A commonly used model for non-rigid shape matching is that

of intrinsic isometries, which aims at finding correspondences that

preserve geodesic distances between every pair of points as well

as possible [Bronstein et al. 2006; Mémoli and Sapiro 2005]. Un-

fortunately, although this model has several attractive properties

from the theoretical standpoint [Lipman and Funkhouser 2009], it

also leads to very difficult optimization problems and corresponds,

in full generality, to an NP-hard subclass of the quadratic assign-

ment problem [Çela 2013; Solomon et al. 2016]. To alleviate this

issue, recent methods have concentrated on either computing con-

tinuous correspondences by mapping the shapes into a common

(parameterizing) domain, whose choice is primarily dictated by the

shape topology, (e.g., [Aigerman and Lipman 2015, 2016; Lipman

and Funkhouser 2009] among others), or, alternatively by relaxing

the requirement for point-wise maps, by considering generalized or
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soft correspondences [Ovsjanikov et al. 2012; Solomon et al. 2012,

2016], which often leads to easier optimization problems.

The latter category has been particularly prominent, especially

since methods built on the notion of soft mappings can take advan-

tage of the recent advances in solving optimal transport problems,

[Mandad et al. 2017; Solomon et al. 2015, 2016], or, alternatively,

reduce to solving a simple least squares problem in the case of the

functional maps framework [Kovnatsky et al. 2013; Ovsjanikov et al.

2012, 2017]. At the same time, while computing soft or functional

maps can be done efficiently, extracting continuous or bijective point-
wise maps is often challenging and error prone [Rodolà et al. 2015].

This problem is exacerbated even further by the presence of

intrinsic symmetries, such as left to right symmetry, common to

many shape classes, and which can lead to functional maps that

represent a mixture between multiple possible solutions. Resolving

this symmetry ambiguity is commonly done by assuming external

information such as user-specified landmarks or training data in

the context of learning [Boscaini et al. 2016], which further reduces

the practical utility of the resulting pipeline.

In this paper, we address these challenges and propose an ap-

proach that uses the functional maps pipeline to produce a point-

wise map that is orientation-preserving, approximately continuous

and bijective, as illustrated, e.g., in Figure 1. Our extension has

two main components. First, we introduce a new purely geomet-

ric orientation-preservation energy term for estimating functional

maps, by exploiting intrinsic descriptor functions in a novel way.

The second part is inspired by the recent iterative methods based

on variance minimization [Mandad et al. 2017; Vestner et al. 2017b]

whose goal is to produce transport plans that minimize local vari-

ance. We show how a similar idea can be used efficiently in an

iterative scheme, which significantly extends the Iterative Closest

Point refinement proposed in the original functional maps work

[Ovsjanikov et al. 2012]. Namely, we show that by alternating be-

tween map optimization in the spectral and spatial domains, we can
obtain a significant improvement in the overall map quality with-

out relying on expensive, linear or quadratic, assignment problems,

which allows us to handle more complex shapes efficiently. We

demonstrate that our formulation can outperform state-of-the-art

techniques on standard benchmarks containing near isometric and

non-isometric shape pairs.

Contributions. To summarize, our contributions include:

(1) We propose a new term to promote orientation-preserving

maps in the functional maps framework.

(2) We propose a new refinement scheme that improves the maps

in both the spectral and spatial domains, while promoting

continuity, coverage, bijectivity and while controlling for

outliers that have a strong negative effect on prior methods.

(3) Through extensive experimental evaluation we demonstrate

significant improvement over the state-of-the-art methods

on standard benchmarks.

2 RELATED WORK
As shape matching is a very vast and well-studied area of Computer

Graphics, below we review the methods most closely related to

ours, concentrating on techniques aimed at producing continuous

correspondences between non-rigid shapes, and refer the reader

to recent surveys including [Biasotti et al. 2016; Tam et al. 2013;

Van Kaick et al. 2011] for an in-depth treatment.

Point-basedmethods.Most early non-rigid shape matching meth-

ods concentrated on directly finding correspondences between

points on the two shapes, while minimizing a prescribed energy,

such as approximate preservation of geodesic distances, e.g., [Bron-

stein et al. 2006; Huang et al. 2008; Ovsjanikov et al. 2010; Sahillioğlu

and Yemez 2010; Tevs et al. 2009] among many others. This model

has appealing theoretical properties, since for example, it is known

that a small number of landmarks is often sufficient to recover the

full isometric map [Lipman and Funkhouser 2009; Ovsjanikov et al.

2010]. At the same time, these methods often lead to difficult combi-

natorial problems, and can easily fail when the intrinsic isometry

assumption is violated. Moreover, although recent methods have

tackled the computational complexity of quadratic assignment prob-

lems [Dym et al. 2017; Kezurer et al. 2015; Maron et al. 2016], they

still remain computationally expensive, and often limited to tens or

hundreds of points.

Bijections through parameterization. Another very fruitful line
of work attempts to establish continuous maps between shapes by

mapping them to a canonical domain, such as a sphere [Lipman

and Funkhouser 2009] where continuous correspondences can be

estimated explicitly from a small set of landmarks. Techniques that

fall into this category have seen significant progress recently, both

extending their applicability [Aigerman et al. 2017; Aigerman and

Lipman 2016; Aigerman et al. 2015] to more general topological

spaces and number of landmarks, as well as improving the compu-

tational complexity of the underlying methods. Nevertheless, they

typically rely on a strict choice of landmarks and can potentially

induce significant distortion in distant regions. A particularly suc-

cessful extension of one of these techniques, called Blended Intrinsic

Maps [Kim et al. 2011] aims to lift these assumptions and estimates

a set of candidate maps, which are then blended together into a con-

sistent, and often continuous correspondence. This method is fully

automatic and can produce high quality maps for similar shapes.

However, as we show below, it can also fail in aligning shape fea-

tures, especially in challenging non-isometric cases.

Functional Maps. Another set of techniques that have been pro-

posed for non-rigid shape matching is based on the notion of func-

tional maps introduced in [Ovsjanikov et al. 2012] and extended

significantly in follow-up works, including [Aflalo and Kimmel 2013;

Ezuz and Ben-Chen 2017; Kovnatsky et al. 2013; Rodolà et al. 2017]

among others (see [Ovsjanikov et al. 2017] for a recent overview).

These methods assume as input a set of function correspondences,

which can be derived from point-wise landmarks, or from auto-

matically estimated region correspondences. They then estimate a

functional map matrix that allows to transfer real-valued functions

across the two shapes, which is then converted to a point-wise map.

Although the first step reduces to the solution of a linear system of

equations, this last step can be difficult and error prone [Ezuz and

Ben-Chen 2017; Rodolà et al. 2015]. Furthermore, the produced map

can fail to be either continuous or bijective, since the correspon-

dence is usually computed in a particular direction (from a source
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to a target shape). As a result several recent extensions have tried to

alleviate these limitations by e.g. modifying an input map using vec-

tor field flow [Corman et al. 2015], promoting bijectivity via adjoint

regularization [Huang and Ovsjanikov 2017] or deblurring maps

via projection onto an appropriate subspace [Ezuz and Ben-Chen

2017]. Nevertheless, the use of these techniques is still restricted to

cases where the initial input is of sufficiently high quality and they

fail under moderate non-isometries.

Optimal Transport and Variance Minimization. Another com-

monly used relaxation for matching problems is based on the for-

malism of optimal transport, which has recently been used for find-

ing bijective and continous correspondences [Mandad et al. 2017;

Solomon et al. 2016; Vestner et al. 2017b]. These techniques have

benefited from the recent computational advances in solving large-

scale transport problems, especially using the Sinkhorn method

under entropic regularization [Cuturi 2013; Solomon et al. 2015].

Our method is inspired by two recent methods in this category

[Mandad et al. 2017; Vestner et al. 2017b], which have been pro-

posed to efficiently find bijective maps, while promoting continuity

by iteratively solving optimal transport problems, whose cost pro-

motes continuity with respect to the current solution. The iterative

nature of these methods allows them to tackle large-scale problems

efficiently and can result in approximately continuous and bijective

maps even in challenging cases.

Orientation Preserving Maps. The most common approaches for

computing orientation-preserving maps are based on using parame-

terizing domains, such as the sphere or the hyperbolic plane, where

orientation changes can be detected directly, e.g. [Aigerman and Lip-

man 2016; Kim et al. 2011], amongmany others. Unfortunately, using

such domains can also induce significant distortion when mapping

across arbitrary shapes. Other approaches have used multi-scale so-

lution analysis for detecting symmetric flips [Sahillioğlu and Yemez

2013], which can help avoid local orientation changes, but does

not allow to control global orientation preservation. Finally, in the

functional maps framework, symmetry disambiguation has been

addressed either by transferring some known symmetry from one of

the shapes [Ovsjanikov et al. 2013], using a vector field flow starting

from a given orientation-preserving map [Corman et al. 2015], or

by using learning with extrinsic descriptors [Boscaini et al. 2016].

Unfortunately all these approaches require some a priori informa-

tion, which is not always available. Differently, we propose a purely

geometric method for enforcing orientation preservation, which

can be formulated directly in the functional (spectral) domain, using

only an outward normal field on each shape.

3 PROBLEM SETUP AND MOTIVATION
The main goal of our work is to compute continuous, orientation-

preserving and approximately bijective maps between a pair of

shapes, having arbitrary discretizations, and without any external

information, such as user-provided landmarks. We assume that

all shapes are represented as manifold triangle meshes, possibly

with boundary, but place no restriction on the shapes having the

same number of vertices or consistent triangulations. In full gener-

ality, recovering accurate correspondences is a well-known difficult

problem. In our work, we concentrate on shapes that undergo ap-

proximately isometric deformations, i.e. deformations that roughly

preserve geodesic distances between pairs of points on each shape.

Nevertheless, as we show below, in practice our method is capable

of handling significant deviation from this model and can produce

accurate correspondences even between non-isometric shapes.

To solve this problem we adopt the formalism and general strat-

egy of the functional maps framework, introduced in [Ovsjanikov

et al. 2012] and significantly extended in follow-up works, such as

[Kovnatsky et al. 2013; Litany et al. 2017; Rodolà et al. 2017] among

many others (see also [Ovsjanikov et al. 2017] for an overview).

One of the advantages of this framework is its generality, as it can

naturally handle different shape discretizations, and can incorporate

a wide range of prior information such as descriptor or landmark

constraints. For completeness, we first give a brief overview of the

main steps involved in computing functional maps and then describe

our key contributions to this framework.

Basic Pipeline. Given a pair of shapes, S1, S2 containing, respec-

tively, n1 and n2 vertices, the basic pipeline for computing a map

between them using functional maps, consists of the following main

steps (see Chapter 2 in [Ovsjanikov et al. 2017]) :

(1) Compute a set of k1 << n1 and k2 << n2 basis functions on

each shape, and store them as columns in matricesΦ1,Φ2.

(2) Compute a set of q descriptor (also called probe) functions on

the shapes, that are expected to be approximately preserved

by the unknown map. Store their coefficients in the corre-

sponding bases as columns of matrices A1,A2, of size k1 × q
and k2 × q respectively.

(3) Compute the optimal functional map C via:

C = arg min

X
∥XA1 −A2∥2F + α ∥∆2X − X∆1∥2F , (1)

where ∆1 and ∆2 are the Laplace-Beltrami operators of the

two shapes expressed in the respective bases.

(4) Convert the functional mapC to a point-to-point one, possibly

via an iterative approach, such as the Iterative Closest Point

(ICP) in the spectral embedding.

The key step (3) in the pipeline above is aimed at finding a func-

tional map that would approximately align the given descriptor

functions, and also commute with the Laplace-Beltrami operators,

which corresponds to finding isometric (preserving geodesic dis-

tances) correspondences. This step has been further extended e.g.

using more powerful descriptor preservation constraints via com-

mutativity [Nogneng and Ovsjanikov 2017] or using manifold opti-

mization [Kovnatsky et al. 2016] among many others (see Chapter

3 in [Ovsjanikov et al. 2017]).

While powerful and efficient, this pipeline has a significant limita-

tion, which reduces its utility in practice. Namely, although comput-

ing a functional map can be done efficiently in practice, obtaining a

continuous point-to-point map, using this pipeline, has proven both

challenging and error-prone.

The difficulty of recovering continuous correspondences with

functional maps is fundamentally related to two challenges: first, the

functional map constraints in step (3), such as descriptor preserva-

tion are typically intrinsic and do not disambiguate different possible
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solutions, which might be present e.g. due to the left-right symme-

tries of the shapes. Second, enforcing continuity in the point-wise

map recovery in step (4) can quickly lead to difficult quadratic opti-

mization problems. Furthermore, these two challenges are closely

related, since e.g. the notion of an orientation preservation, which

can be used to disambiguate possible symmetric correspondences is

defined only for continuous maps.

In this paper we propose an approach to overcome these chal-

lenges, and to produce approximately continuous and orientation-

preserving maps without any additional information, such as user-

provided landmarks, knowledge of symmetries or training data for

learning. For this, we first introduce a novel term designed to pro-

mote orientation-preserving maps, directly in step (3) of the initial

functional map estimation pipeline. This term helps to reduce the

ambiguity that might be present due to, e.g. left-right symmetries

in the shapes, but is still not guaranteed to lead to continuous maps.

To achieve this, we modify the pointwise map recovery, step (4),

by introducing a bijective and continuous ICP (BCICP) approach,

which unlike the basic ICP method, improves the maps both in the
spatial and in the spectral domains, resulting in significantly higher

quality functional and point-to-point correspondences.

4 PROPOSED METHOD
As mentioned above, our goal is to find orientation-preserving,

approximately continuous and bijective point-wise maps. We first

introduce an orientation-preserving energy term which directly fits

into the functional map pipeline. We then introduce a refinement

step, bijective and continuous ICP (BCICP) to convert the functional

map to a point-wise one, where both bijectivity and continuity are

strongly promoted, while refining the maps in both the spectral and

spatial domains. We also propose a simple and efficient approach

that places special emphasis on detection and removal of outlier

correspondences, which commonly occur with existingmethods and

which can have strong impact on the visual and semantic quality.

Below we describe each of these steps in our pipeline.

4.1 Orientation preservation
Many successful methods in shape matching, e.g. [Bronstein et al.

2006; Huang et al. 2008; Ovsjanikov et al. 2010; Sahillioğlu and Yemez

2010; Tevs et al. 2009] among others, are based on computing intrin-

sic isometries, which are maps that must approximately preserve

intrinsic (geodesic) distances between pairs of points on each of the

shapes. Although very powerful, this deformation model also has

a significant limitation, since many shape classes naturally have

intrinsic symmetries, which are non-identity self-maps that preserve

geodesic distances. Such symmetries imply that multiple possible

equally-likely correspondences might exist between pairs of shapes.

Perhaps the most common source of ambiguities are the left-right

symmetries present in both organic and man-made shapes (see e.g.

Figure 2, left). Resolving such ambiguities has long been a chal-

lenge for purely intrinsic techniques, with several approaches being

proposed based on learning [Boscaini et al. 2016] or using a priori
knowledge of symmetries on some shapes [Ovsjanikov et al. 2013]

among others. Below we propose a purely geometric technique to

resolve these ambiguities, within the functional maps framework.

Fig. 2. Orientation preservation: for a pair of FAUST shapes, we used the
Wave Kernel Signatures (WKS) as descriptors to initialize a functional map.
Due to the symmetry ambiguity, the WKS initialization gives a map where
both legs on the source are mapped to the left leg of the target. By adding
the direct operator (+directOp) or the symmetric operator (+symmOp), we
obtain the correct direct or symmetric maps from the WKS descriptors.

Our approach for deriving orientation-preserving constraints is

based on the following classical observation: given two oriented

surfacesM,N , a smooth mapT : M → N is orientation preserving if

and only if the map differential across tangent spaces dTp : TpM →
TT (p)N is orientation preserving [Guillemin and Pollack 2010]. In

the case of embedded oriented surfaces, for any pair of vectors

v,w ∈ TpM in the tangent plane of p ∈ M , we can construct the

triple product ω(v,w,n(p)) = ⟨v ×w,n(p)⟩, where × is the standard
cross-product and n(p) is the outward facing normal at p. Then,
a smooth and bijective map is orientation preserving if and only

if ω
(
v,w,n(p)

)
and ω

(
dTp (v),dTp (w),n(T (p))

)
, have the same sign

(positive or negative), for all pairs of tangent vectors v,w and for

all points p. Moreover, in the case of isometric maps, this implies

ω
(
v,w,n(p)

)
= ω

(
dTp (v),dTp (w),n(T (p))

)
.

One difficulty in translating this definition into an energy that

can be optimized in practice is that it relies on the map differential

dT which is itself difficult to compute for maps between discrete

surfaces that might not have the same triangulation. Moreover,

enforcing the preservation of orientation directly might lead to

non-convex energies that would be difficult to optimize.

Instead, we propose to approach this problem using the formalism

of functional maps. Namely, given a functional map F : F(M) →
F(N ), across functional spaces ofM and N , so that F (f ) = д, where
f : M → R, and д : N → R, we consider the gradients, ∇f ,∇д
of f and д. Furthermore, in the case of isometric maps the gra-

dient commutes with the pull-back, which implies that if F is a

functional map associated with some pointwise isometry T , then
∇д = ∇

(
F (f )

)
= dTp

(
∇f (p)

)
, for all p. This means that in the con-

text of isometries, orientation preservation can be written in the

functional language as:

F
(
Ω(∇f ,∇h,nM )

)
= Ω

(
∇F (f ),∇F (h),nN

) ∀ f ,h ∈ F(M). (2)

Here, nM and nN are outward normal fields onM and N respec-

tively,Ω denotes the result of the triple product at each point, so that,

e.g. Ω
(
∇f ,∇h,nM

)
(p) = ω

(
∇f (p),∇h(p),nM (p)

)
, and the equality

must be understood as equality between functions.

In principle, Eq. (2), can directly be used as a constraint to enforce

orientation preservation, when optimizing for a functional map F ,
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by minimizing the difference between the two sides of the equation.

This, however would lead to a difficult optimization problem since

F is present twice on the right side, meaning that terms involving

products of functional maps would appear. Furthermore, the opti-

mization would need to be taken over all pairs of functions, f ,h,
leading to a large number of energy terms.

An alternative approach is to observe that when the outward nor-

mal field n is fixed, Ω(·, ·,n) is linear in each of its first two parame-

ters, and Ω can be interpreted as a bilinear form mapping pairs of

functions to real values through integration: f ,h →
∫
Ω(f ,h,n)dµ .

This could allow us to define a single linear functional operator by

duality with bilinear forms. Unfortunately, as shown in the following

theorem, this bilinear form does not carry orientation information:

Theorem 4.1. For any closed surface:
∫
Ω(f ,h,n)dµ = 0 ∀h, f

Proof. See appendix □

To overcome these challenges, we observe that, the standard

functional map pipeline is based on the presence of some descriptor

(or probe function) correspondence constraints [Ovsjanikov et al.

2017]. These are pairs of functions fi ,дi , typically obtained from

some descriptors, such that we expect the unknown functional

map to satisfy F (fi ) = дi . Our observation is that if f and F (f ) is
replaced by fi and дi in Eq. (2) then this equation becomes linear in

the functional map, and moreover the difference between the two

sides can be interpreted as a linear functional operator, as follows:

F
(
Ω(∇fi ,∇h,nM )

)
− Ω

(
∇дi ,∇F (h),nN

)
= 0 ∀h ∈ F(M) Finally,

note that Ω(∇fi , ·,nM )) is a linear functional operator in its second

parameter, which we denote as Ωfi (·), with the normal field being

implicit in the domain over which fi is defined. This leads to the

following orientation preserving term:

min

F

∑
i

F ◦Ωfi −Ωдi ◦ F
2

(3)

As observed in other works on functional maps, when linear oper-

ators are discretized as matrices in some basis, the composition ◦ be-
comes simply matrix multiplication. Using this term alongside other

standard terms for functional maps, such as descriptor preservation

and commutativity with the Laplace-Beltrami operators, allows us

to recover maps that are both accurate and orientation preserving.

Finally, observe that if orientation-reversing maps are required,

for example in the context of symmetry detection, this corresponds

to reversing the orientation of the normal field, which in turn, by

linearity, can be done simply by replacing the minus with a plus

sign in Eq. (3). See Fig.3 for several examples of self-symmetric maps

computed by reversing the orientation, starting with Wave Kernel

Signature [Aubry et al. 2011a] descriptors, which are invariant to

orientation changes.

Initialization. With this term at hand, we compute the initial

functional map between a given pair of shapes S1 and S2, via:

C12 = arg min

X
α1

XA1 −A2

2

+ α2

∑
i

XDmult

1i − Dmult

2i X
2

+

α3

∆2X − X∆1

2

+ α4

∑
i

XDorient

1i − Dorient

2i X
2

.

Here,Dmult

i are themultiplicative operators, introduced in [Nogneng

and Ovsjanikov 2017], while Dorient

i are the orientation-promoting

Fig. 3. Self-symmetric maps: our symmetric operator can be used to find
the self-symmetric map of a shape, while using orientation-invariant WKS
descriptors. The second row shows the self-symmetric maps of the corre-
sponding shapes in the first row, via texture transfer.

operatorsΩfi with respect to the i
th
descriptor function, as described

in Eq. (3), but expressed as matrices in the given basis on the two

shapes. Note that when using intrinsic descriptors, such as theWave

Kernel Signatures [Aubry et al. 2011b], only the last term promotes

orientation preservation, without imposing assumptions on rigidity.

We describe the exact choice of descriptors in Section 5.

4.2 Bijective and Continuous ICP (BCICP)

Fig. 4. Bijective and Continuous ICP: the orientation-preserving/reversing
term is added as a soft constraint to regularize amapwith preferred direction.
However, it is not strong enough to guarantee that the produced map is
free from symmetry ambiguity (such as the front leg region of the map
produced with the direct operator or the arm region of the maps created
with the symmetric operator). With the proposed BCICP refinement step,
we can get a much better direct/symmetric map.

Although the orientation-preserving terms described above can

help to reduce, e.g., left-right ambiguity present in many shape

classes, it nevertheless does not necessarily lead to continuous or
bijective maps. To achieve this, we introduce a novel approach based

on iterative map refinement, by significantly extending the Iterative

Closest Point (ICP) refinement proposed in the original functional

maps pipeline [Ovsjanikov et al. 2012]. That method was based

on iteratively recomputing the point-to-point map from its func-

tional counterpart, simply by nearest neighbor search in the spectral

domain, and updating the functional map by projecting onto the

closest orthonormal matrix. Our main observation is that by updat-

ing the map both in the spectral and spatial domains we can obtain

significant improvement in the final overall map quality, and in par-

ticular, can promote continuity without sacrificing computational

ACM Transactions on Graphics, Vol. 37, No. 6, Article 248. Publication date: November 2018.



248:6 • Ren, Poulenard, Wonka, and Ovsjanikov

Algorithm 1 BCICP: Bijective and Continuous ICP

1: Input Initial functional maps C
(0)
12
,C
(0)
21

and maxIter

2: Initialization C12 ← C
(0)
12
,C21 ← C

(0)
21
, iter← 1

3: while iter ≤ maxIter do
4: Compute vertex-to-vertex maps π12,π21 ▷ Algorithm 2

5: Detect and fix the outliers in π12,π21 ▷ Algorithm 4

6: Improve the coverage of π12,π21

7: Improve the continuity of π12,π21 ▷ Algorithm 3

8: C12 ← arg min

Φ2C − π21Φ1

2

9: C21 ← arg min

Φ1C − π12Φ2

2

10: return bijective and continuous π12,π21, refined functional

maps C12 and C21

efficiency. Moreover, instead of processing a map in one direction,

we consider two functional maps, in opposite directions between

the two shapes, and process them jointly. This helps us to enforce

invertibility, and thus the bijectivity of the resulting maps.

Our overall algorithm is summarized in Algorithm 1. We take

as input two functional maps C12 and C21 between shapes S1 and

S2, initialized using the approach described in the previous section,

and alternate between computing two point-wise maps, refining

them using the steps described in the following, and recomputing

the induced functional maps.

In our paper, a point-wise map from S1 to S2 (with n1 and n2

vertices resp.) is represented in two ways: (1) as a vector T12 ∈ Rn1
,

where the i-th vertex on shape S1 is mapped to T12(i)-th vertex

on shape S2. We use this representation in the algorithm descrip-

tions. (2) as a matrix π12 ∈ Rn1×n2
, where π12

(
i,T12(i)

)
= 1,∀i =

1, · · · ,n1, and the remaining entries equal to zero.

Fig. 5. Bijection improving accuracy. When the initial map contains large
errors (e.g., the arms of the woman are mapped to the legs of the gorilla), it
is hard for ICP to correct them. However, if we additionally consider the
map from the other direction, we can improve the accuracy significantly.
The regions colored black are outliers that are detected by the edge dis-
tortion. This example also illustrates that discontinuities and outliers are
non-negligible problems in ICP.

4.2.1 Bijection. Our first step is to modify the functional map

refinement procedure to strongly promote bijectivity. For this we

propose a simple iterative scheme that takes into account both the

direct map C12 and the one in the opposite direction C21. A priori,

these might not be inverses of each other, as, in the simplest case,

they are initialized independently. Our goal, therefore is to rectify

this loss of bijectivity while remaining close to the initial maps. See

Fig. 5 for an illustrative example of how promoting bijectivity can

Algorithm 2 Bijective ICP for Functional Maps

1: Input Initial functional maps C
(0)
12
,C
(0)
21

and maxIter

2: Initialization C12 ← C
(0)
12
,C21 ← C

(0)
21
, iter← 1

3: while iter ≤ maxIter do
4: π21 ← arg min E ′

1

(
π21 | C12

)
5: π12 ← arg min E ′

2

(
π12 | C21

)
6: C11 ← arg min E ′

3

(
C11 | π12,π21

)
7: C11 ← Proj

(
C11

)
8: C22 ← arg min E ′

4

(
C22 | π12,π21

)
9: C22 ← Proj

(
C22

)
10: π12 ← arg min E ′

3

(
π12 | C11,π21

)
11: π21 ← arg min E ′

4

(
π21 | C22,π12

)
12: C12 ← arg min E ′

1

(
C12 | π21

)
13: C12 ← C12Proj

(
C21C12

)
14: C21 ← arg min E ′

2

(
C21 | π12

)
15: C21 ← C21Proj

(
C12C21

)
16: iter← iter + 1

17: return π12, π21, C12, C21

improve the map between two shapes. For this, we construct the

following energy:

E
(
C12,C21,π12,π21

)
= λ1E1 + λ2E2 + λ3E3 + λ4E4 (4)

where

E1 = E1

(
C12, π21

)
=
Φ2C12 − π21Φ1

2

F

E2 = E2

(
C21, π12

)
=
Φ1C21 − π12Φ2

2

F

E3 = E1

(
C11, π12, π21

)
=
Φ1C11 − π12π21Φ1

2

F

E4 = E1

(
C22, π12, π21

)
=
Φ2C22 − π21π12Φ2

2

F

(5)

Our goal is to solve the point-wise maps π12,π21 and refined

functional maps C12,C21 from the following problem:

min

C12,C21,π12,π21,C11,C22

λ1E1 + λ2E2 + λ3E3 + λ4E4 (6)

The first two terms E1 and E2 in (5) are the regular functional map

energy defined on both directions. Bijectivity is promoted through

the last two terms. Note that we introduce additional variables C11

andC22 describing self-maps under map composition. A natural pos-

sibility would be to try to enforceC11 andC22 to both equal identity.

However, in practice, we have observed that especially when the

initial maps are far from being inverses of each other, in an iterative

scheme, it can be better to enforce a weaker constraint and require

C11 and C22 to be orthonormal only. As observed in [Ovsjanikov

et al. 2012; Rustamov et al. 2013] this constraint corresponds to

requiring the underlying pointwise maps to be area-preserving, a
property that the identity self-maps naturally satisfy.

The basic algorithm for bijective ICP refinement is summarized

in Algorithm 2. Specifically, we do not optimize for all variables

at the same time. For each iteration, we optimize each term in a

sequence. Moreover, to speed it up, instead of solving a constrained

problem, we decompose the problem into two steps: (1) first solve

the unconstrained problem where we have a closed-form solution

(2) project the solution to the search space. For example, when we
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Algorithm 3Continuity promotion: smooth a vertex-to-vertex map

1: t
(0)
xi ← yT (i) − xi ,∀i = 1, · · · ,nx

▷ Initialize the displacement vector field

2: iter← 1

3: while iter ≤ maxIter do
4: for i = 1, · · · ,nx do
5: Li ← the largest connected component ofNY

T (NXi )
▷ Update the search space

6: j ← arg mink ∈Li

(xi + 1

|NXi |
∑
l ∈NXi

t
(iter−1)
xl

)
− yk


▷ Find the best candidate

7: t
(iter)
xi ← yj − xi ▷ Update the correspondence field

8: T (i) ← j ▷ Update the vertex-to-vertex map

9: return T ▷ the smoothed vertex-to-vertex map

optimize for C11 with given π12 and π21:

min

C11 is orthogonal

E3 =
Φ1C11 − π12π21Φ1

2

F (7)

As discussed above, we can update C11 in two steps as follows:

C11 ← Φ†
1
π12π21Φ1

C11 ← Proj

(
C11

) (8)

where for a matrix A with SVD decomposition A = UΣVT , the
operator Proj(·) is defined as Proj(A) = UVT . Similarly, we derive

the update rules for the variables C22,C12,C21. Finally, the steps

in lines 13-15 of Algorithm 2 are designed to couple to compu-

tation of C12 and C21 by using a projection of their composition

onto an orthonormal matrix. To derive these steps, we observe sim-

ply that if, e.g. C12 satisfies C12 = C12Proj(C21C12) it follows that
Proj(C21C12) = Id . Moreover, if the compositionC21C12 is orthonor-

mal, this implies that the stationary points of this update rule must

satisfy C12C21 = Id .We discuss the role of this step in more detail

in the Results section.

In addition, we can also incorporate the orientation-preserving

term within the refinement step. Specifically, for each of the four

terms, we can add an extra orientation term where the descriptors

are constructed from the functional map. Take the first term E1 as

an example,Φ1 can be regarded as the descriptors (eigenfunctions)

defined on shape S1, whileΦ2C12 are the corresponding descriptors

(linear combinations of the eigenfunctions) defined on shape S2.

Therefore, similar to Eq. (2), we can construct the following energy

with the orientation-preserving term:

E ′
1

(
C12,π21

)
= E1

(
C12,π21

)
+ α1

∑
i

C12 ◦ΩΦ∗i
1

−ΩΦ2C∗i
12

◦C12

2

F

(9)

where A∗i denotes the i-th column of the matrix A. To simplify the

computation, we can useC12 from the previous iteration to construct

the descriptors, then the energy is quadratic w.r.t the parameters

C12 and π21. We can similarly add an extra orientation-preserving

term to Ei and denote the new energy as E ′i ,∀i = 2, 3, 4.

4.2.2 Continuity. Unlike the basic ICP method that simply iter-

ates between computing the point-wise and the induced functional

Fig. 6. Improvements due to continuity. We show maps for a single selected
shape pair and visualize edge length distortions via a heat map (red indicates
the strongest distortions). Given an initialization computed using functional
maps, "BCICP w/out continuity" shows the result of our framework without
the continuity improvement after a single iteration, while BCICP shows
results with the continuity after a single iteration. Basic bijective ICP can
smooth the noisy input map in the functional space, but the smoothness in
the Euclidean space is not guaranteed, which is fixed by our approach.

maps, in addition to a new bijective term, we also introduce addi-

tional intermediate steps that promote continuity and the overall

coverage. See Fig. 6 for an illustration how promoting continuity

can influence the computed map. In our framework, after computing

point-wise correspondences we modify them to rectify discontinu-

ities, remove outliers and improve overall coverage.

In the first step, we use a similar correspondence smoothing tech-

nique to the Correspondence Estimation proposed in [Papazov and

Burschka 2011]. The continuity is naturally preserved by mapping

close-by vertices on the source shape to close-by vertices on the tar-

get shape which can be achieved by smoothing the correspondence

vector field constructed from the map T .
Specifically, assume a point-wise map T : X → Y is given,

where the shape X,Y has the vertices’ positions

{
x1, · · · , xnx

}
and{

y1, · · · , yny
}
stored in X ∈ Rnx×3

and Y ∈ Rny×3
respectively.

We let N X denote the neighborhood structure of shape X so that

N Xi gives the list of neighbors of xi vertex on shapeX. The notation
for Y is identical.

The correspondence vector field t ∈ Rnx×3
is defined as the

displacement vector between two corresponding vertices: txi =
yT (i) − xi . Therefore, the average displacement at vertex xi is com-

puted as:

t̄xi =
1

|N Xi |

∑
k ∈NXi

txk (10)

To smooth the correspondence at this vertex, we just need to find

the nearest neighbor to xi + t̄xi on the target shape. Instead of

searching through the neighbors of yT (i) as suggested in [Papazov

and Burschka 2011], we restrict the search space to the largest

connected component of NY
T (NXi )

. Specifically, we first map the

neighbors of xi , i.e., N Xi to the target shape, and we get the set of

verticesT (N Xi ). The neighbors ofT (N
X
i ) on shapeY are candidates

for xi . To remove the possible outliers from the search space, we

search through the largest connected component of NY
T (NXi )

. Alg. 3

explains the steps to promote continuity in details.

4.2.3 Outlier Regions. In addition to the outlier removal step

mentioned above, we also introduce an explicit procedure to detect

and remove outlier correspondence regions (See Fig. 7 for an ex-

ample). These can be particularly problematic to existing methods,
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Algorithm 4 Detect and fix the outliers of a map T : X → Y
1: Get the edge list E from the adjacency matrix A of the shape

2: for each edge e = (e1, e2) ∈ E do

3: compute the edge distortion re =
∥yT (e

1
)−yT (e

2
) ∥

∥xe
1
−xe

2
∥

4: if re > ϵ then
5: A(e1, e2),A(e2, e1) ← 0 ▷ Break the connectivity

6: V ← the largest connected component of A
7: for i = 1, · · · ,nx do
8: if xi < V then
9: T (i) ← T

(
arg mink ∈V d(xi , xk )

)
▷ d is the Geodesic or Euclidean distance

10: return T

Fig. 7. Outlier Regions. Using functional maps can create outliers in the
point to point correspondences. These outliers can be detected and fixed by
our method to improve the mapping.

since they can affect the map globally making it difficult to recover

a continuous correspondence.

To detect the outlier regions, we measure the distortion of every

edge on the source shape, where the distortion is defined as the

ratio of the length after and before the mapping. A large distortion

suggests that at least one of the endpoints of this edge is an outlier.

Therefore, such edges can help detect the boundary of the outlier

regions. To detect the complete region of the outliers, we remove

the edges with distortion above a certain (large) threshold from

the adjacency matrix of the shape, and consider outliers to be all

vertices that do not belong to the largest connected component

according to this modified connectivity. Finally, we map each outlier

vertex v on the source shape to the same vertex that is mapped to

by its nearest neighbor of v in this largest connected component

(see Algorithm 4). This helps to remove the outlier correspondences

while the subsequent map coverage and continuity help to smooth

and refine the resulting map.

4.2.4 Coverage. In addition to modifying the map to promote

continuity and removing outlier regions from the correspondences,

we also add a step to improve the coverage of each map, which is

closely related to its bijectivity. The coverage of a vertex-to-vertex

map is defined as the ratio between the area of the covered vertices

and the total surface area of the target shape. A vertex on the target

is called covered if there is at least one vertex on the source that is

mapped to this vertex according to the vertex-to-vertex map.

We use the following simple heuristic to improve the coverage

without hurting the local smoothness: Specifically, for each uncov-

ered vertex p on the target shape, we check if it has a neighbor

that gets mapped to by multiple vertices from the source. We then

find the neighbor with the largest preimage size, and pick a vertex

from its preimage set as the preimage for p (see Fig. 8). For this

selection, we also consider the map in the opposite direction, to

Fig. 8. Improving coverage: given point-wise maps T12, T21 between shapes
S1 and S2, our goal is to use T21 to improve the coverage of T12 and vice
versa. Thus, for any vertex z on S2 that is left unmapped by T12, we find
its neighbor y with the largest pre-image size (here, all the red vertices are
mapped to y via T12). Then if T21(z) = x we set T12(x ) = z .

Fig. 9. Visualization of the coverage promotion step improving ICP. Note
the incorrect mapping on the body and front fixed by our approach.

improve bijectivity. Please see the supplementary materials for the

complete description of the heuristics that we use in this step.

Fig. 9 illustrates the effect of including the coverage improvement

step with the standard ICP functional map refinement. We observe,

in particular, that step helps to better condition the linear system in

functional map recovery, which allows to reconstruct more accurate

vertex-to-vertex maps.

5 RESULTS
We implemented the proposed algorithms in MATLAB. In the fol-

lowing, we first describe the competing methods and their imple-

mentation. Then we describe the datasets and provide multiple

quantitative and qualitative evaluations.

Description of competing algorithms.We compare our method,

called directOp + BCICP, against multiple competing algorithms.

• directOp + BCICP: our complete framework as described in

this paper, including the orientation-preservation term and

the BCICP refinement steps.

• BIM: Blended Intrinsic Maps [Kim et al. 2011] using an exe-

cutable provided by the original authors.

• (WKS/SEG) Initialization: The basic functional map frame-

work, using the multiplicative operators proposed in [Nog-

neng and Ovsjanikov 2017] to compute the initial soft cor-

respondences without any refinement, using as descriptors

the wave kernel signatures (WKS) or the wave kernel maps

built from region-based correspondences computed by an

automatic algorithm [Kleiman and Ovsjanikov 2017].

• ICP: ICP to refine soft correspondences as described in the

original functional maps framework [Ovsjanikov et al. 2012],

and commonly used in follow-up works.
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• PMF (gauss kernel): Product Manifold Filter [Vestner et al.

2017b] using the code of the original authors. They provide

two versions of their code: 1) coarse-to-fine and 2) core algo-

rithm initialized by a functional map. We use the version 2

(see below for an explanation).

• PMF (heat kernel): Product Manifold Filter using SHOT de-

scriptors and Heat Kernel Signatures (HKS) to find the corre-

spondences in the product space [Vestner et al. 2017a].

• CPD: Coherent point drift [Rodolà et al. 2015] using the im-

plementation of the original authors.

• deblur: deblurring and denoising approach [Ezuz and Ben-

Chen 2017] to post-process results to map vertices on the

source shape to general surface locations on the target shape

(within triangles), not only to other vertices.

In order to facilitate a reasonable comparisonwe omit hierarchical

aspects of the different frameworks. One problem is that computa-

tion time can be prohibitive for conducting many experiments when

high resolution data is used. In addition, the comparison is more

difficult to interpret if factors relating to the hierarchical aspects

of code influence the results. Therefore, we run the experiments

on lower resolution data, so that hierarchical computation is not a

requirement for any of the methods.

Initialization. For the methods listed above, all the approaches

except BIM need given corresponding descriptors to compute a map.

For PMF (heat kernel), the SHOT and HKS descriptors are used

as suggested by the authors. For the other methods, we test two

settings:

• WKS. Wave kernel signatures (WKS) are used as global de-

scriptors for initialization.

• SEG. Region-based correspondences [Kleiman andOvsjanikov

2017] are used to initialize functional maps. To control for

the possible segmentation errors, we vary the parameter that

controls the number of region correspondences, until the map,

initialized from these region matches, has coverage above a

certain threshold (25% in our experiments).

Datasets. We use multiple standard datasets to compare the differ-

ent techniques: FAUST, TOSCA, and SHREC. To remove the bias

present due to identical mesh connectivity within a dataset, we

use LRVD algorithm [Yan et al. 2014] to remesh the datasets, while

ensuring that each shape contains approximately 5k vertices. It is im-

portant to note that the shapes were remeshed independently
so that they do not share the same connectivity, making our

evaluation more difficult than in most prior works.

• FAUST: The FAUST dataset [Bogo et al. 2014] contains meshes

of ten different humans in ten different poses each. The

dataset can be split into two different types of shape pairs:

isometric pairs stemming from the same person and non-

isometric pairs stemming from two different persons.

• TOSCA: The TOSCA dataset [Bronstein et al. 2008] contains

80 meshes of humans and animals in 9 categories. It can natu-

rally be split into two different types of shape pairs. Isometric

pairs contain two shapes of the same class and non-isometric
pairs are two shapes of a different class with dense manually

verified correspondences.

• SHREC: We use the FourLegs category of the SHREC 2007

dataset [Giorgi et al. 2007].

Measurement. In our experiments, we measured the accuracy, con-

tinuity (smoothness), and bijectivity of the computed maps.

• Accuracy. In each dataset, the ground-truth direct and sym-

metric correspondence are given. To measure the accuracy

of a computed map, we adopted the following measures:

– per-vertex error: for each vertex we accept the ground-

truth direct and symmetric correspondences and take the

minimum as the error of this vertex.

– per-map error: we compute the average per-vertex error

to the direct map and the average per-vertex error to the

symmetric map and take the minimum of these twometrics.

– direct error: we compute the average per-vertex error to

the direct ground-truth correspondences only.

• Continuity and coverage. To measure the map continuity,

for each edge on the source shape, we compute the ratio

between the geodesic distance of the two mapped endpoints

on the target shape and the edge length. Note that a trivial

map as mapping all the vertices to the same vertex on the

target would have a low distortion, since nearby vertices

vertices are mapped nearby. Therefore, for practical purposes,

continuity has to be considered in conjunction with coverage,

which is defined as the ratio between the area of the covered

vertices and the total surface area of the target shape.

• Bijectivity. To measure bijectivity, we consider the maps

from both sides, denoted as T12 and T21, and compute the

average geodesic distance between the composed maps T12 ◦
T21,T21 ◦T12 and the identity map.

Evaluation for automatic shape matching. In this sequence of

tests, we compare the performance of our method in the context

of automatic shape matching. We use functional maps with two

different settings: (1) WKS and (2) SEG. We then add the orientation-

preserving term and the BCICP refinement as our main method

and denote it with (WKS/SEG + directOp + BCICP). We report

the average geodesic error w.r.t the three error measures in Ta-

bles 1–4. Figures 10–13 show the corresponding cumulative curves

of the percentage of matches that have error smaller than a thresh-

old, when measured according to the three different error met-

rics. Note that when compared to the baseline methods (BIM and

SEG + ICP) and with respect the direct error measure, our method

achieves 17.5% improvement on 200 FAUST isometric dataset, 18.4%

on 400 FAUST non-isometric dataset, 38.8% on 568 TOSCA iso-

metric dataset, and 43.5% on 190 TOSCA non-isometric dataset.

Moreover, even for the per-vertex error, our method achieves 17.8%

improvement of accuracy on FAUST isometric pairs, 24.1% on FAUST

non-isometric pairs, 31.4% on TOSCA isometric pairs, and 38.3%

on non-isometric pairs. In summary, our algorithm (+ directOp +

BCICP) significantly outperforms the other methods consistently

across the FAUST and TOSCA dataset on isometric or non-isometric

pairs.

We note that running PMFwith gauss kernel [Vestner et al. 2017b]

on meshes with 5k vertices till convergence is computationally

expensive (taking between 50 minutes and 7.5 hours depending on
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Methods

Ave geodesic error(×10
−3
)

per vertex per map direct

BIM 43.69 44.43 93.17

PMF (heat kernel) 57.89 61.66 62.06

WKS + ICP 42.52 120.65 150.84

SEG + ICP 27.52 30.09 30.09

SEG + BCICP 24.93 27.22 27.22

WKS + directOp + BCICP 25.94 39.28 44.16

SEG + directOp + BCICP 22.63 24.83 24.83
Table 1. 200 FAUST Isometric pairs. We compare our algorithm with
orientation-preservation and BCICP to competing methods: BIM, PMF
with heat kernel and the ICP refinement. For both initializations, using
WKS or SEGS, our algorithm outperforms the other methods.

Methods

Ave geodesic error(×10
−3
)

per vertex per map direct

BIM 45.49 46.30 79.38

PMF (heat kernel) 55.92 59.95 60.54

WKS + ICP 65.59 166.37 210.11

SEG + ICP 30.94 45.68 45.68

SEG + BCICP 25.21 39.77 39.77

WKS + directOp + BCICP 29.33 46.90 51.31

SEG + directOp + BCICP 23.50 37.29 37.29
Table 2. 400 FAUST non-Isometric pairs.

the shape pair and initialization). Therefore, here we only compare

to PMF with heat kernel, and the results of PMF with gauss kernel

in 10 iterations are shown in the supplementary materials. When

comparing the two initializations, we can find that for FAUST, SEG is

better thanWKS, but in the case of TOSCA dataset, it is the opposite.

The reason is that the region matching algorithm can fail for animal

shapes since its parameters were tuned for human shapes. For the

TOSCA dataset, there are segmentation errors like mapping the tail

to the back leg, or mapping the head to the front leg. Therefore, for

TOSCA dataset, the WKS is more stable than SEG. As illustrative

visualizations, Figure 14 shows an example of one TOSCA isometric

pair, where our method produces the direct and the symmetric

map. Figure 15 gives another example of a non-isometric pair in

the TOSCA dataset. The complete comparison (including the fMap

initializations without any refinement, PMF with gauss kernel, and

our method with orientation-reversing term) can be found in the

supplementary materials.

Evaluation of BCICP w.r.t each component. From the results,

it is easy to observe the usefulness of the orientation-preserving op-

erators. Specifically, using WKS descriptors with direct/symmetric

orientation-preserving/reversing operator, we can obtain a good

direct/symmetric map. Also for SEG initialization, “+directOp +

BCICP” performs consistently better than “+ BCICP,” which verifies

the usefulness of the orientation-preservation term.

In addition, we evaluate the utility of the different components

of the BCICP framework as discussed in Sec. 4 (see Table 5). We

tested 50 pairs of TOSCA isometric pairs with initialization "WKS

+directOp" (Ini). Then we run the regular ICP and the bijective ICP

Methods

Ave geodesic error(×10
−3
)

per vertex per map direct

BIM 41.20 45.14 70.76

PMF (heat kernel) 49.03 71.44 71.82

WKS + ICP 44.90 128.45 194.01

SEG + ICP 42.93 61.36 73.30

SEG + BCICP 36.55 54.29 65.86

WKS + directOp + BCICP 28.25 38.56 43.34
SEG + directOp + BCICP 34.80 52.13 61.36

Table 3. TOSCA Isometric: 568 pairs, including 132 pairs of Victoria, 120
pairs of Michael, 110 pairs of cats, 72 pairs of dogs, 52 pairs of horses, 40
pairs of David, 32 pairs of centaur and 6 pairs of wolfs.

Methods

Ave geodesic error(×10
−3
)

per vertex per map direct

BIM 256.11 265.83 358.99

PMF (heat kernel) 190.21 249.14 287.29

WKS + ICP 314.82 406.67 449.75

SEG + ICP 145.92 178.14 214.05

SEG + BCICP 120.45 150.71 187.38

WKS + directOp + BCICP 90.03 112.68 120.96
SEG + directOp + BCICP 114.94 144.45 180.39

Table 4. 190 TOSCA non-Isometric pairs, including 120 pairs of gorilla and
Victoria, and 70 pairs of gorilla and David.

Measure Ini ICP bi-ICP

BCICP

- cov.

BCICP

- cont.

BCICP

Err - perVtx 51.67 41.13 39.01 38.33 37.29 29.97
Err - perMap 67.52 52.43 50.04 45.09 47.59 34.87
Err - direct 67.86 52.43 50.04 45.08 47.59 34.87

Coverage(%) 40.05 54.40 55.75 55.56 81.77 82.09
Bijectivity 59.12 32.23 13.16 14.04 3.32 4.09

Continuity 1.499 1.418 1.531 1.496 1.896 1.735

Table 5. Evaluation of each component of BCICP: we add bijectivity to ICP
(bi-ICP) and removed coverage (BCICP - cov.) and continuity (BCICP - cont.)
from the BCICP refinement. We evaluate each component with respect to
different metrics. Note that ICP has the best continuity because it has a
smaller coverage rate.

(bi-ICP), which is a simplified version of our BCICP approach, as

discussed in Algorithm 2. The bijective ICP has a better performance

than the regular ICP w.r.t the accuracy. Moreover, we also tested

the settings where the coverage-improving step is removed (BCICP-

cov.), and the smoothness-improving step is removed (BCICP-cont.),

which includes the step of removing the outliers and improving the

continuity. The results show that each component makes a contri-

bution when compared to the regular ICP refinement. In addition,

when they are combined together, we can achieve a much better

result (last column of Table 5).

Improving coverage and smoothness using BCICP. A major

advantage of our framework is to improve the coverage and smooth-

ness of the resulting maps compared to the state of the art. On

the one hand, coverage and smoothness work as a regularizer to
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Fig. 10. Evaluation on 200 FAUST Isometric pairs with respect to three error measures.

Fig. 11. Evaluation on 400 FAUST non-Isometric pairs with respect to three error measures.

Fig. 12. Evaluation on 568 TOSCA Isometric pairs with respect to three error measures.

reduce the error in the matching itself. On the other hand, coverage

and smoothness are desirable attributes for a range of applications,

including texture transfer and deformation transfer. In Fig. 16 we

report results for the FAUST dataset and in Fig. 17 we report results

for the TOSCA dataset. We can see that our approach drastically im-

proves coverage as well as bijectivity on both datasets. In Fig. 18 we

report a smoothness error metric evaluated on FAUST and TOSCA.

All tests reveal that BCICP brings drastic improvements in terms

of coverage and bijection compared to BIM and ICP. In terms of

continuity, BCICP is comparable to BIM and ICP. However, the rea-

son for the relatively good smoothness value of BIM or ICP is that

they have low coverage with many vertices on the source shape

mapped to the same vertex on the target shape. This gives zero edge
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Fig. 13. Evaluation on 190 TOSCA non-Isometric pairs with respect to three error measures.

Fig. 14. An example isometric pair from the TOSCA dataset using the
direct/symmetric orientation operator with BCICP refinement.

Fig. 15. An example non-isometric pair from the TOSCA dataset using the
direct/symmetric orientation operator with BCICP refinement.

Fig. 16. Bijectivity (distance to identity) and coverage comparison on the
FAUST dataset: 100 pairs of isometric shapes.

distortion. For practical purposes, continuity has to be considered

in conjunction with coverage.

Fig. 17. Bijectivity (distance to identity) and coverage comparison on the
TOSCA dataset: 190 pairs of non-isometric shapes.

Fig. 18. Smoothness: 200 FAUST isometric pairs and 190 TOSCA non-
isometric pairs. Here we show the edge distortion ratio of the following
methods: BIM, PMF with heat kernel (PMFh), SEG + ICP (ICP), SEG + PMF
with gauss kernel (PMFg), WKS + directOp + BCICP (ours1), SEG + directOp
+ BCICP (ours2). The difference between ICP and ours is small, but ours has
a much higher coverage rate, without hurting the smoothness.

Algorithm Complexity

Runtime (s)

n = 1k n = 5k n = 10k n = 15k

Bijectivity O(k3) 0.0663 1.7595 7.5121 18.831

Continuity O(n) 0.0339 0.2649 0.7120 1.2594

Fix Outliers O(n) 0.0073 0.0332 0.0851 0.1583

Coverage NA 4.7305 5.6101 21.937 32.471

Table 6. Runtime for meshes with n vertices.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 248. Publication date: November 2018.



Continuous and Orientation-preserving Correspondences via Functional Maps • 248:13

Fig. 19. Convergence. Here we show how the energy defined in Eq. (4)
gets improved over 10 iterations using our BCICP refinement step (the
solid orange line) and the regular ICP refinement (the dashed orange line).
Some other important measurements are also included: the ratio of the
vertices/areas that are not covered by the map (the dark blue lines), the
bijection error (the light blue lines) and the ratio of the vertices/areas that
are categorized as outliers (the green lines). All the measurements are nor-
malized by the value at the initialization to make them visually comparable.
Therefore, the plot shows the relative improvement over the initialization.
The inset figures shows the initial map, and the resulting map of BCICP
and ICP after 10 iterations.

Runtime. Let us first note that adding the orientation-preserving
or reversing terms to the functional map pipeline does not change

the runtime complexity, as it still leads to a least squares problem.

The BCICP refinement pipeline includes four parts: (1) Bijective

ICP: the time complexity is O(k3) for solving a linear system with

k basis functions and O(n logn) for nearest neighbor search where

n is the number of vertices. (2) Smoothing a map to improve the

continuity: the time complexity is O(cn), where c is the maximum

number of neighbors in the mesh. (3) Fixing outliers: we find the

connected components which has complexity of O(n) for meshes.

(4) Coverage: the time complexity to improve the coverage depends

on the quality of the input maps.

The runtime for meshes with different number of vertices is

reported in Table 6, where for each category, we randomly picked

10 pairs of shapes from the SHREC dataset andmeasured the average

runtime for each step (initialized by BIM). In all of our tests, we run

the BCICP refinement for 5 iterations. The runtime of 8 random

pairs of shapes (2 for each dataset) using other methods are reported

in the supplementary materials.

Convergence. We do not have a theoretical analysis of the conver-

gence rate of BCICP since some of the components are heuristic and

are not designed to minimize this energy directly (e.g., removing the

outlier region). However, our main observation is that these compo-

nents combined together can help fix the major issues affecting the

map quality, within a small number of iterations.

Fig. 19 shows an example of the convergence rate of BCICP (solid

lines) compared to ICP (dashed lines) w.r.t. different measurements

including the energy defined in Eq. (4) (orange), the fraction of

uncovered vertices (dark blue), the bijectivity error (as defined in

the “Measurement” paragraph above) (light blue), and the ratio

of vertices that are categorized as outliers (as defined in Section

4.2.3) (green). More examples can be found the in the additional

materials. Note that all the values in this plot have been normalized

w.r.t. its corresponding initial values (specifically, the initial map

has energy value 99.37, un-coverage 81%, bijection error 0.318, and

the outlier ratio 17%). Note that although the energy curves are not

monotonically decreasing, we can observe a major improvement in

map quality (w.r.t. four different measurements) especially within

the first 3 iterations, which is true for the vast majority of the tested

pairs, and is not the case for ICP. The corresponding maps are

visualized as inset of Fig. 19.

Parameters. In our experiments, all the weights and parameters in

the complete pipeline are set to the same values across all experi-

ments. Specifically, for the functional maps pipeline (fMap) we used

the default settings for the different regularizers provided by the au-

thors. For the orientation-preserving/reversing term, the weight α4

is set such that this term has similar scale to the multiplicative term.

We use 50 basis functions for both the source and the target shape to

compute a functional map. For BCICP refinement, we use the follow-

ing settings: the weights for the different energy terms in Eq. (4) are

set to one. The number of basis that are used in the refinement step

is 50 for the source and the target shape. The threshold for turning

off the smoothness step is 0.6, i.e. if the coverage rate is below 0.6,

we skip the smoothness step to avoid over-smoothed maps and a

long running time. The threshold to evoke the coverage-promotion

step is set to 0.5, i.e., if the coverage rate for the vertex-to-vertex

map is below 0.5, we would improve the coverage to make the linear

system more stable. The threshold in outliers detection is set as the

maximum edge length, i.e., if the distance between the two mapped

endpoints is larger than the maximum edge length on the target

shape, this edge will be removed from the connectivity matrix.

Moreover, our framework takes the WKS descriptors or the seg-

mentation as initializations. We used 50 eigenvectors to compute

the WKS descriptors except for the TOSCA non-isometric dataset:

we used 250 eigenvectors instead given that this is the most chal-

lenging dataset and we need more information to compute the WKS

descriptors. For segmentation computation, we used the default

setting provided by the authors.

Map couplingwith projection.Asmentioned in Section 4.2.1, our

BCICP procedure includes a coupling step (lines 13-15 of Algorithm

2) that updates the functional maps C12 and C21 using a projection

of their composition. In practice, this step does not play a strong

role when the intialized maps are already consistent, but can be

particularly useful for non-isometric shapes and weak initializations.

In Figures 10–13, we plot the results of our method with (solid

lines) and without (dashed lines) these coupling steps. Note that

the difference between the solid and dashed lines is neglectable

except for the TOSCA non-isometric dataset w.r.t the perMap and

direct error measure. Nevertheless, we leave the exploration of other

possible approaches for functional map coupling during refinement

as an interesting direction for future work.

Failure cases. Table 7 shows the failure rate of our algorithm (WKS

or SEG with direct operator and BCICP refinement). As failure we
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Dataset

compared to BIM compared to SEG + ICP

perVtx perMap direct perVtx perMap direct

Faust-Iso 0.50% 1.50% 1.00% 20% 20% 20%

Faust-nonIso 1.25% 8.00% 7.00% 7.75% 5.75% 5.75%

Tosca-Iso 7.22% 13.03% 10.56% 11.62% 11.23% 10.04%

Tosca-nonIso 7.37% 12.63% 7.89% 11.05% 14.21% 10.53%

Table 7. Failure case. The table lists the percentage of pairs where our
method (WKS/SEG + directOp + BCICP) produces worse results than the
baseline methods: BIM or SEG + ICP.

consider a shape pair for which our algorithm gives worse result

than the baseline methods: regular ICP with SEG initialization and

BIM. Specifically, for each of the datasets, we pick our winning

method, i.e, SEG + directOp + BCICP for the FAUST dataset and

WKS + directOp + BCICP for the TOSCA dataset. Then we measure

the failure rates w.r.t. the two baseline methods. Moreover, for the

TOSCA dataset, SEG + BCICP is worse than SEG + ICP for fewer

than 3% of the shape pairs.

Fig. 20. Failure case. When the orientation-reversing term is not strong
enough, the initial map (+symmOp) still contains a lot of symmetry am-
biguities. Specifically, the front legs are roughly aligned with the direct
correspondences, while the back legs are roughly aligned with the symmet-
ric correspondences. In this case, the BCICP refinement can fail to produce
a good map with consistent orientation.

Texture transfer & Post-processing evaluation:. We also illus-

trate our results via texture transfer. In Fig. 21 we compare the

results for various automatic methods on two isometric shape pairs

from the TOSCA dataset. In Fig. 22 we show a comparison of deblur,

ICP + CPD, and BCICP. In addition, in Fig. 23 we compare CPD and

deblur to BCICP as a post-processing step where the initial maps

are computed from functional map pipeline with 3 or 8 landmarks.

These qualitative results illustrate the performance of our approach

in selected challenging settings. They also highlight the fact that

improvements in the chosen quantitative metrics result in visual

improvements in practical applications.

5.1 Limitations and Future Work
Our method has several limitations that we would like to over-

come in future work. First, our method is very good at computing

solutions that trade off different requirements: matching quality,

bijectivity, coverage, and smoothness. However, we cannot enforce

exact bijectivity or complete coverage. As our experiments with

PMF show, enforcing strong bijectivity typically leads to many un-

desirable outliers. It would therefore be interesting to extend the

current state-of-the-art to enforce bijectivity without generating

outliers. Second, our approach is not directly applicable to point

clouds or partial shapes. In future work, we would like to extend our

work to a broader range of inputs so that we can directly process

point clouds stemming from scanned data. Third, shape matching

on shape collections typically works for smaller meshes with up to

10k vertices. It would be rewarding to derive very fast shape match-

ing algorithms that can tackle shapes that are orders of magnitude

larger in the future, by, e.g., parallelizing our map refinement steps.

6 CONCLUSIONS
In this paper, we proposed an algorithm to compute orientation-

preserving maps via the functional maps pipeline. We first intro-

duced a novel term for computing functional maps that promotes

orientation preservation directly in the functional (spectral) do-

mains. We then extended the iterative post-processing pipeline to

improve maps both in the spectral and spatial domains. We demon-

strated the advantages of our method by comparing to several recent

state-of-the-art methods on well known test datasets. Our frame-

work not only improves the quality of the maps compared to ground

truth, but also the bijectivity and continuity of the maps.
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7 APPENDIX
Proof of Theorem 4.1.

Proof. Given a compact oriented surfaceM without boundary,

our goal is to show that for any smooth f : M → R and д : M → R,
we have: ∫

p∈M
⟨∇f (p) × ∇д(p),n(p)⟩dµ(p) = 0, (11)

where n(p) is an outward pointing normal at a point p, while ×
is the standard vector cross product in R3. Indeed, if we consider

the volume V bounded by M , and functions
˜f , д̃ : V → R whose

gradients agree with those of f and д onM , then we have, by the

divergence theorem:∫
p∈M
⟨∇f (p) × ∇д(p),n(p)⟩dµ(p) =

∫
q∈V

div

(
∇ ˜f (q) × ∇д̃(q)

)
dµ(q)

=

∫
q∈V

(
⟨curl(∇ ˜f (q)),∇д̃(q)⟩ − ⟨curl(∇д̃(q)),∇ ˜f (q)⟩

)
dµ(q) = 0.

Here the second to last equality holds by the basic properties of

vector products, while the last one follows from the curl-free nature

of gradients. □

Interestingly, the same statement also holds in the discrete setting,

when normals are given on faces of the triangle mesh and the gradi-

ents are discretized by linear interpolation of function values at the

vertices. A basic calculation in that case shows that for any closed

manifold mesh, we have:

∑
t ∈triangles⟨∇f (p)×∇д(p),n(p)⟩A(t) = 0.
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